Main content
Health and medicine
Course: Health and medicine > Unit 8
Lesson 5: Sensory perceptionVisual cues
Created by Ronald Sahyouni.
Want to join the conversation?
- Wouldn't it be more simple if we were cyclops?(12 votes)
- It would be simpler, but it would be a lot less useful. Having two eyes allows us to have depth perception; that's not possible with only one eye.(23 votes)
- Hello Everyone :D
It would great if someone can just explain the diff. between ''Relative Size'' and ''Size Constancy'' visual cues.
Thanks in advance,
Murtuza Abbas.(5 votes)- Relative size is just outright comparing the sizes of two things, i.e. Thing A is bigger than Thing B.
Size constancy is the idea that our brains can perceive two things as different sizes but know that they are actually approximately the same size.(11 votes)
- Are there written notes to every video? I constantly write and type as I listen and watch, and it would save a lot of time to just watch and add my own notes later.
Thank you for your time and help in advance(6 votes)- It takes a lot of extra effort, but I've been writing my own transcriptions of each video I see. When I was doing my degree, there was just no time to make neat, perfect notes with eloquent sentences and pretty diagrams, so I had to take jot notes. Spending the extra time on my notes has really helped me I've found. Somehow writing every word down helps me to internalize it a lot better.
You can access the transcript though in each Khan video by clicking the Youtube link on the bottom right corner, and going to the youtube video, and then pressing the "...More" button, and then going to transcript. The youtube video for this video is over here https://www.youtube.com/watch?t=481&v=PQyQadCqLAI(5 votes)
- are the constancy cues monocular cues?(4 votes)
- Yes they are, because they apply using just one eye (as opposed to binocular cues that are only evident when using both eyes).(5 votes)
- Is relative height dependent on surrounding cues?(3 votes)
- In the picture example he uses it makes it seem like it, but the relative height phenomenon is simply that we perceive objects higher in our field of view (the upper half, i.e. lower retinal cells of our eyes) as more of a background object; "up is sky and down is ground" sort of thing. We have a preconceived knowledge that going farther back the ground "tilts up." However, surrounding cues allow us to form 3D representations rather than a flat image.
Consider two squares of same size: we draw them on paper, one closer to the top edge of our oriented paper. Now if we draw a horizontal line above the "bottom edges" of both squares but below the "top edges" (the squares have to stager). We would perceive the one higher up as farther away, even when they are identical size (because they are identical, we also will think of the one we see as farther away as bigger). Turn the paper upside down and the roles of the squares reverse, the other now taking the background.(5 votes)
- If two eyes is what allows us to have depth perception, why do we still have depth perception if we close one eye? I can still orient myself fine depth-wise if I close one eye.(2 votes)
- You still have some depth perception because there are other methods our brains have learned to use to judge depth along with using two eyes. But your depth perception is not as good as when you are using both eyes.(5 votes)
- Is there a significant difference between size constancy and relative size?(2 votes)
- Five years late, but I understand size constancy to be a derivation of relative size: because larger objects are perceived to be closer thanks to relative size, an approaching object can be perceived as getting closer rather than getting larger (size constancy).(4 votes)
- Which ones of these are "form" cues, and which ones are "depth" cues?(2 votes)
- I would say that relative height and shade are "form cues" while Retinal disparity, convergence, relative size, interposition are "depth" cues. But I don't think it's exactly categorical--some of these cues provide information about two categories, for example relative height.(3 votes)
- "Monocular vision is poor at determining depth."
Is this true?
In general, which perceptual categories correspond to which cues?
https://www.boundless.com/psychology/textbooks/boundless-psychology-textbook/sensation-and-perception-5/advanced-topics-in-perception-40/perceiving-depth-distance-and-size-172-12707/(1 vote)- Walk in the woods sometime and close one eye. You will see that your perception of the trees locations, depths, etc are altered.(5 votes)
- Are size, shape, and color constancy monocular cues? 6:13(2 votes)
Video transcript
Voiceover: How is perception organized? Well, whenever we look at anything, we need to make inferences. One of the things that we can do is take into account depth. Depth allows us to get
an idea of how far away something is, how close something is, and just it adds to our
perception of objects. In order for us to take into
account depth of objects, we can use a few different tricks. The first thing that we
can immediately notice is that humans have two eyes. We have binocular vision. Binocular vision basically gives us something known as retinal disparity, retinal disparity. Basically, since our eyes
are about 2-1/2 inches apart and this basically allows us
to get slightly different views of objects in the world around us. For example, let's imagine
you're at a bowling alley. When you're looking at some pins, your left eye sees the pin,
the bowling pins in this angle, and your right eye sees
them in this angle, and your brain takes these two
images, puts them together, and gives you this image over here. This allows us, this gives us some degree of
depth of what we're looking at. That's retinal disparity. Another way that our two eyes help us take depth into account is something known as convergence. This basically is trying to say that when we're looking at
things really far away, the muscles in our eyes
are fairly relaxed. When we're looking at
something really close to us, the muscles in our eyes turn our eyeballs towards the object. Our brain is able to look at how much the eyeballs are turned in order to give us
another kind of depth cue. There are other cues that we can get that we don't need two eyes for. Those would be monocular cues, monocular cues. One monocular cue would be relative size, relative size. Relative size gives us a idea
of the form of an object. Perceptual organization
is organizing to depth and then form. Relative size would be ... I'm just bringing up a few examples. Relative size would be
this example over here, where we got two ants, and this ant is perceived to be bigger. Since it's perceived to be bigger, we know ants are fairly the same size, so since this ant is
perceived to be bigger, we perceive it as being closer to us. Even though we know these
two ants in real life are the same size, but since this guy is bigger, we think of it as being closer to us. This we really only need one eye for. We can see the relative size of things and infer the proximity
of the object to us with just one eye. Another monocular cue is
something known as interposition. Interposition would be
this example over here, where you only need one eye to see that this rectangle is
in front of this oval. We can infer that since the rectangle is in front of the oval that the rectangle is closer to us. Another monocular cue is relative height, relative height. Relative height would be
this example over here. Relative height is basically saying that objects that are
perceived to be higher are perceived to be further away than those that are lower. This rectangle over here, this one over here, is higher up than this
red rectangle over here. Because it's higher, and based on all the surrounding cues, we perceive it to be as further away. But in fact, they are the same exact shape. They're the same exact height. It's just that this one is
placed physically higher than the red rectangle, and so we perceive it to be further away. That's relative height,
and that's a monocular cue. One more monocular cue
is shading and contour. We can actually use light and shadows in order to get an idea
of the form of an object. These two images over here are actually the same exact image. It's just that this one is flipped over. We took this image, we
flipped it upside down, and now we see it over here. In this image, we kind of
see this little contour. It looks like a crater. Whereas over here, it looks
more like a volcano-ey mountain. Based on light and the
shadows of an object, you can infer whether it's a crater or if it's coming out
of the earth like this. These are some monocular cues. Those are the monocular
cues that we can use to get information about
the form of an object. There is another degree to
perceptual organization, and that is motion. Whenever we perceive an object, we have to categorize
whether it's moving or not. There is one interesting monocular cue known as motion parallax, motion parallax or relative motion. What this is basically saying is that when you're in a car and you're driving around, the things that are closest to you appear like they're moving
really, really quickly, whereas things further away from you appear like they're moving really slow. If you've ever driven down
in a desert or something and looked off in the
distance and see mountains, you're looking at mountains, the mountains look like they're moving really, really slowly, whereas things like cars
right next to you or the road looks like it's moving really quickly. That is relative motion,
and that's a monocular cue. You can get an idea of
how far away things are based on how much they move as you move. One other perceptual
category is constancy. There are a few different
types of constancy. There is size constancy. Over here, we have size constancy. When we look at these
two ladies over here, we can see that this lady is bigger than this one over here. This lady casts a bigger
image on our retina than this one does. Yet we know that these two women are more or less fairly the same size. Even though this woman
casts a bigger retinal image than this one does, we know that they're fairly the same size. That's size constancy. There is something known
as shape constancy. Shape constancy would be over here. Here, we have a door, it's a rectangle, and as someone is opening the door, the shape that we actually
see changes a little bit. So if we actually look at it, it's no longer a rectangle. It's more of this trapezoid. It's actually changing shape, so the image that the
door casts on our retina is actually different. Yet we know that the door
isn't changing shape. It's still a rectangle. It's just that it's getting opened, so our perception of the
door remains the same. We know it's the same shape even though it's casting a
different image on our retina. One other type of constancy
is color constancy, color constancy Here, we have a red cup, and despite changes in the lighting, we know, even though over here, this red appears to be
brighter than this red, this red over here, this part of the cup looks darker, even though the actual color that is falling on our
retina is different, we know that the cup is
actually the same color. That is color constancy.