Main content
Health and medicine
Course: Health and medicine > Unit 3
Lesson 7: Aortic dissection and aneurysmWhat is an aortic dissection?
Created by Vishal Punwani.
Want to join the conversation?
- Are Stanford Type A more serious? I mean the symptoms seem pretty similar to standard heart attack symptoms, so I imagine people head to the hospital pretty rapidly to get it checked out. Type A is surgery, but is that 'rush him to the ER' surgery? Or 'We'll pencil you in this week'? Type B is taken care of with medication, I imagine it's not as serious as you can take your time with it, is that due to the lower turbulence/pressure the farther down you go?(11 votes)
- A lot of those symptoms are the same as the ones for MIs.
So How can you tell the 2 apart?(3 votes)- You're right, a lot of these symptoms are similar. Classically, MIs are described as pressure in the chest (sometimes accompanied by radiation to the arm, neck, or jaw, as well as sweating or shortness of breath), while an Aortic Dissection is described as a tearing sensation in the chest or epigastric area radiating to the back, with many of the same accompanying symptoms.
In the hospital setting, an MI diagnosis is confirmed by elevation of Cardiac Markers (typically Troponin I, Creatinine Kinase, and Creatinine Kinase Myoglobin-B) in the blood, which are released into the blood from dying heart cells. Also, MIs have characteristic changes on an ECG (ST segment elevation, depression, T wave inversion). Generally, if you have two out of these three (symptoms of an MI, elevated Cardiac Markers, or ECG changes), you have confirmed the diagnosis of an MI.
In Aortic Dissection, you will often see an uncharacteristically low blood pressure (if someone with Hypertension usually has a blood pressure of 150/90, and in the ED is found to have a blood pressure of 90/50, this is concerning). Also, you may find someone to have a lower blood pressure in the left arm than the right arm, or much stronger pulses in the right arm or neck than the left. Dissection can be seen via ultrasound and confirmed by CT or MR angiography.
It's also important to note that the emergent changes in blood pressure from an Aortic Dissection can precipitate an MI, so that when a patient presents, they may be having both a dissection and an MI at the same time.(5 votes)
- I am studying biomedical engineering and really love your videos but you say "a CT is still the gold standard because doing a CT comes with less risk to a patient than an MRA"
How is a MRA/MRI more risk to a patient than a CT? A CT involves a decent dose of radiation to the body and an MRI nothing. Is it the injection of contrast? But there is also contrast medium given with an CT so it would be an equal risk.
I would still agree with you because a CT is quicker and cheaper and you basically get the same result ... but less risk? I don't know.(3 votes)- Not all ct require contrast..so it's safe to use in emergency condition wen we don't kno the patients renal status(1 vote)
- If I'm not mistaken the aorta is divided in front of L2 (2nd Lombar) into the iliac arteries not L4?(1 vote)
- It's the renal arteries that originate at about L2 level and aorta bifurcate into the iliac arteries at L4.(1 vote)
- Hi, if the dissection origins from the ascending aorta and extend to the descending aorta, in the Stanford system, is it still Type A in Standford system ?(1 vote)
- Yes it is. Tht is because the classificatio dipends on where the dissection begins and not where (or how) it ends.(1 vote)
- What's the difference between an aortic dissection and an aortic aneurysm?(1 vote)
- Aortic dissection is an aortic tear. Aortic aneursym is an outpouching of weak wall in the aorta (that can burs).(1 vote)
- also would this be consiterd a tumer(1 vote)
- No, this would not be considered a tumour(1 vote)
- was this dieasies in the gold rush(1 vote)
- It's likely been around since humans have been, so yes(1 vote)
- cant u tell were it is if they have pain in the spusific place.(1 vote)
- The pain a patient may feel may originate from the location of the aortic dissection, but it won't be specific enough for a diagnosis and treatment to be made and done.(1 vote)
- so if u have abomital pain u might have a dissection(1 vote)
- There are many other conditions that can cause abdominal pain, but yes.(1 vote)
Video transcript
An aortic dissection is a
life threatening condition where there's a separation of the layers in the wall of the aorta. Now, in case that doesn't
quite make sense to you, let's go over some background information. We know that every cell in our body needs oxygen to survive. It's really important that
our cells have constant access to oxygen, and in
fact, many of our cells can start to die if
they're deprived of oxygen for even a few minutes,
so to get oxygen to all of our cells, we actually
have special delivery cells dedicated to carrying
oxygen to every other cell. These delivery cells are
red blood cells within our blood, and they get
around our body by way of our circulatory system,
which is made up of our arteries, our veins, and our heart. So now that we know
the basic components of our circulatory system and
why they're so important, again, to circulate blood
around our bodies so we can stay alive, I just want
to focus for now on the main artery in our body called the aorta. So now let's look at where
exactly the aorta is. So this here is a side view of the guy, so we're looking at him from the side, and this type of view is
called a sagittal view, and I purposefully chose
this view so I could easily show you the different
regions of the aorta. So the aorta stems off
the top of the heart, and it arches up to about
the upper chest area, and then back downward again, and it heads down behind the heart, sitting right in front of
the spine, the vertebrae, all the way down to just
below the bellybutton, where it splits into two other arteries. The ileac arteries. We actually divide up the
aorta into different regions, so this region up here, we
call this the aortic arch, and then this region
here in the chest area is called the thoracic
aorta, thoracic referring to the thorax, or the
trunk, and then we have this big section down here
that starts underneath the diaphragm, called the abdominal area, so now we've looked at the
aorta from a side view, but to get an even better
appreciation of what the aorta looks like, let's look
at it from a front view, or an anterior view, so
that's this view here, and hopefully you can
imagine that the aorta's sitting about midline in
our bodies, and it runs down behind the heart,
and sort of follows the spinal column, so back
here would be our vertebral bodies, our spine, and
the aorta sort of tracks down along our vertebral bodies. So the aorta is really the
main artery in our bodies because it's sort of the
big highway that blood takes to get to every other part
of the body, so blood gets pumped out of the chamber
of the heart here, the left ventricle, and into
the aorta, which has lots of little arteries branching
off of it, to take blood to different parts of the
body, so going back to the highway analogy, these
two smaller arteries here would be exits one and
two, the left and right coronary arteries, and
this up here would be exit three, the brachiocephalic
artery that supplies blood to your brain and to your right arm, and down here we have
the left and right renal arteries that make sure
your kidneys get enough blood, and then down here
we have the left and right common ileac arteries
that supply blood to your pelvis and your lower
limbs, and there are a lot of other arteries that come
off the aorta, but I've just shown you a few. So by now, it's pretty clear
that the aorta's really important, right? You definitely want your
aorta to stay nice and healthy so it can continue
to be the main pipeline for your blood, but
sometimes things go wrong, so this brings us back to
the condition I mentioned at the start of the video. One of the things that
can go wrong is something called an aortic dissection,
and an aortic dissection is a life threatening
condition where there's a separation of the layers
in the wall of the aorta, and to really understand
what an aortic dissection is, let's look at the anatomy
of its walls to see how separation might happen. So let's take out this piece
of the aortic wall here, and use that to look at
the anatomy of the aorta. So the walls of the aorta
have three main layers, and we call each of these
layers a tunic, so we say that the aorta has three
tunics, or in latin, tunica, so that's the outermost layer called the tunica adventitia, and then you've got
this really thick middle layer called the tunica
media, or just the media, and the media's this really,
really thick, muscular layer of the aorta that's
really necessary to allow the aorta to withstand all
the pressure of the blood, the blood pressure that
it has to deal with, and finally, on the very
inside, so facing the inside of the aorta, we've
got the innermost layer called the intima, the tunica
intima, and the intima's just this really thin layer
that lines the inside, so three layers. The outer layer that
sort of keeps the aorta in place. The media, which is the
really thick, muscular layer, and the intima, which is the
really thin, inner layer, and this here is our lumen,
where the blood flows through the aorta, and
if you think about it, the heart is here, pumping
blood out of the heart at pretty high pressure
every second, and so that means the aortic wall is
sort of exposed to really high pressures and sheer
stress, which makes it pretty susceptible to
injury, purely from a mechanical stress point
of view, so an aortic dissection is when you get
a tear in the intima here, and blood enters the
layer between the intima and the media, and that
blood will just continue to sheer away the connection
between the intima and the media, so with
each heartbeat, blood will sort of jet through
this tear and cause even more tearing, sort of
like when you're peeling a hard-boiled egg and you
get through that little membrane under the shell, right? After that membrane gets
broken, you can easily peel off the rest of the eggshell. It's a similar concept,
and as more and more blood enters the plane between
the intima and the media, this dissection sort of
keeps just getting bigger and wider, so from here, usually one of two things happen. You either get continuation of the tear, just continuing to be propagated, or you can get an exit tear that has blood able to re-enter the lumen of the aorta. So if the tear continues to propagate and more and more blood just leaves the circulation to enter the dissection, that just means more and more blood is not getting around the the rest of the body to do its job, and conceivably, you could lose liters of
blood into a dissection because as the blood continues to get into the dissection, it will
just continue to tear along that intimal, medial plane, and continue to tear down
the length of the aorta, collecting blood, and so
you can imagine that would pretty quickly lead to
really severe conditions, like hypotension or shock,
so in an aortic dissection, you've created a true
lumen, which is lined by intima on both sides, and a false lumen, which is between the intima and the media, and some people develop other pathologies within the false lumen later on, so now you know what a dissection is, but what causes it? Let's make some space here. The most common cause of a dissection is chronic hypertension,
which is pathologically high blood pressure. In fact, hypertension
is present in at least two thirds of all cases of dissection, and is due to the stress and degenerative changes that hypertension
causes within the aorta. Another cause of
dissection is a connective tissue disease, such as marfan syndrome, or ehlers-danlos syndrome. These conditions weaken the walls of the aorta, and other connective tissues in your body. You might have a pre-existing aneurysm, which is a weakening and
bulging out of the wall of the aorta, and that can predispose you to a dissection. Trauma to the chest
can cause a dissection. For example, if you're in
a motor vehicle accident. Men are actually 2-3
times more likely than women to develop an aortic dissection, and increasing age is another risk factor for development of dissection. For example, the peak
incidence that we see dissection is between 50 and 65 years old, unless you had one of those underlying connective tissue disorders. Then, the peak incidence
would be between about 20 to 40 years old. So, there are two major ways to classify aortic dissections. The Stanford's System,
and the DeBakey System, but we'll just look at
the Stanford System here, and it's important to find
out what classification a dissection falls into,
because they have implications for treatment, as we'll
see, so let's just make some space here. So there's two major types of dissections under the Stanford's System. There's Type A, and there's Type B. So Type A dissections
involve any part of the aorta before the origin of the
left subclavean artery, so the left subclavean artery starts here, and that means that a Type A dissection can start anywhere along
this part of the aorta, and a Type B dissection
involves the descending thoracic aorta after the left
subclavean artery origin, so a Type B dissection
can involve any other part of the aorta from here down, and again, these are important to
find out because they have implications for treatment,
so Type A dissections usually require surgery,
and Type B dissections are usually treated
medically, so without surgery, and so with this A and B system in mind, there's actually a couple
sites of tears that are pretty common in people
who get aortic dissections, so the most common site
of tears is about two centimeters above the aortic
root, so right about here, and so that would be a Type A dissection. Another really common
site is just after the left subclavean artery,
so about here, so that would be a Type B dissection, but overall, about 90 percent occur
within ten centimeters of the aortic valve, and
the aortic valve is here in the heart, at the top
of the left ventricle. Then why are people getting dissections in these areas in the first place? Why in these two most common areas, and why within ten centimeters
of the aortic valve? Well, if you can imagine
the left ventricle pumping blood out to this
proximal area of the aorta over and over and over
again, these areas get the most immediate, sheer
stress with each pump of the heart, and so over
time, they begin to weaken, and get predisposed to tearing. Also, blood is more
turbulent in the beginning part of the aorta because
it has to sort of navigate this turn of the aorta,
and because of that, a lot of blood will sort
of bump into the sides of the aorta, and over time,
that weakens the walls, as well. Now, someone who's having
an aortic dissection, what symptoms might they feel? Well, the most commonly described symptom is a sudden onset of severe
and central chest pain that often radiates to the back. Patients often describe a tearing toward the back type of pain,
and the pain can actually radiate down the arms,
similar to the symptoms of a myocardial infarct,
which is what we know as a heart attack, but
other symptoms include sweating, nausea, shortness
of breath, weakness, or syncopy. That's fainting, and if you have an aortic dissection in your
abdominal aorta, you might get abdominal pain that
could radiate to your sides or toward your back. In terms of diagnosis,
diagnosis can be sometimes a bit difficult because
aortic dissection can present similarly to a handful
of other conditions, so doctors need to take a good history and examine a patient for
certain signs in order to diagnose aortic dissection,
but there also needs to be a few different
types of imaging done on a patient to directly
observe the dissection and to find out exactly where it is, if there is one, because
knowing where it is is pretty key to treating
it, as we sort of alluded to earlier when we were classifying. A transesophogeal echocardiogram, or TEE, is a test that uses sound waves to produce images of a patient's
heart that we can look at. This is useful for
dissection in that it's quick to do and cheap, but it
can only see the thoracic aorta and the aortic valve. It can't see the abdominal
aorta, which is a potential problem since
it's possible to get dissections down there, as well. A CT, or computerized tomography scan with contrast, is really
the gold standard of diagnosing dissection. For one, you can use
it to image the entire length of the aorta to
make sure you check all of it for dissections,
and two, you can inject a liquid into the patient's
circulatory system that contains iodine, and
that will make the heart, the aorta, and other
blood vessels more visible on the images that you
get from the CT scan. Last, a magnetic resonance angiogram, or an MRA, is actually
100 percent sensitive and specific for picking
up aortic dissections. That means that if there
is a tear, the MRA will pick it up and allow you
to accurately diagnose it as an aortic dissection. This scan interacts with
your body's magnetic field to create images of the
structures in your body. In this case, your aorta,
and I'll just emphasize that even though an MRA
is 100 percent sensitive and specific, a CT is
still the gold standard because doing a CT comes
with less risks to the patient than does an MRA.