If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Electron configurations for the first period

Introduces aufbau principle, Pauli exclusion principle, and orbital notation. Writes out the quantum numbers for the electrons in H and He. Created by Jay.

Want to join the conversation?

  • mr pants teal style avatar for user SanFranGiants
    What does the spin of an electron even mean in general?
    (12 votes)
    Default Khan Academy avatar avatar for user
    • orange juice squid orange style avatar for user eigenface
      There isn't any very good analogy between quantum spin and a non-quantum motion, so it is most often compared to angular momentum. Angular momentum in the non-quantum world means rotation - for instance, a wheel on a moving car is rotating, and therefore has angular momentum.
      When you rotate an electrically charged object, a magnetic field is produced. Given the size, charge, and rotational speed of an object, you can calculate the magnitude of the field produced. We know the size, charge, and magnetic field of electrons - the only problem is, according to classical (non-quantum) formulas, the rotational speed of the electron necessary to generate their magnetic field is faster than the speed of light - which obviously isn't possible.
      So while electrons don't actually rotate in the conventional sense, we still call the quality that produces their magnetic field "spin."
      Let me know if that helped! :)
      (20 votes)
  • aqualine sapling style avatar for user Annabella Shao
    Hey guys, what does l, m, n in the video mean?? Still can't get it.
    (9 votes)
    Default Khan Academy avatar avatar for user
  • male robot johnny style avatar for user abhinav goyal
    At min why is the spin quantum number +1/2 and not -1/2 ?
    (5 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Just Keith
      Electrons that are not required to have a particular spin by Hund's Rules can freely change between the +½ and −½. Since monatomic hydrogen has a single electron it is just as likely to be +½ and −½. So, in a given sample of monatomic hydrogen (which is not stable in the conditions found on Earth, BTW) we would expect approximately half the sample to have a +½ spin and the other half −½ spin.
      (8 votes)
  • purple pi purple style avatar for user Kassidy.D25
    I'm not sure if I skipped a video or what but, I don't understand what he means by "spin up or spin down". That just confused me.
    (2 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Just Keith
      Electrons have a quantum state usually called "spin" (it has nothing to do with spinning around, this is just what we call this state). Have two possible spins, +½ or −½. These are often depicted using up arrows or down arrows, so "up" and "down" are just unofficial ways of referencing the two possible spin states.

      For two electrons to exist in the same orbital, they must have opposite spins.
      (8 votes)
  • leaf red style avatar for user SilentFire
    What is a quantum number?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leafers seedling style avatar for user Joshua Evans
    I am so confused, Is there a simpler version of this video?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • aqualine seedling style avatar for user Injoo  Kang
    There are two electrons in Helium atom. Which electron's spin(?) direction is represented by Ms=-1/2?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leaf green style avatar for user Aarohi
    Hey, Can anyone tell me how was Pauli exclusion principle found?
    I mean according to Pauli exclusion principle why no two electrons in an atom have same 4 quantum number?What is the reason behind that?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • male robot donald style avatar for user Kaavinnan Brothers
      this is actually a good and important question............
      as they must have opposite spins to have a repulsion force existing between them. this helps us to distinguish between all electrons in a atom. if an electron's spin is given an value of +1/2 then we give a value of -1/2 to the electron which is opposite to it in their shell. basically any two electrons that are found in the same orbital, and same sub-shell and in the same shell are given different "spins"! hope u got it......
      you can get more information regarding your question by simply searching the word Pauli exclusion principal itself..
      (2 votes)
  • winston baby style avatar for user AJ
    Does the first electron always have to have an up-spin? For example, can a Hydrogen atom have only a down-spin for its electron?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Darmon
      It does not matter which electron is up-spin and which is down-spin. These are just arbitrary terms used to represent the two different possible values for an electron's intrinsic angular momentum. :)
      (1 vote)
  • mr pants teal style avatar for user Aditya Kannan
    I'm having some trouble with understanding how to calculate certain quantum numbers. I know what they are, but even after I watch the Q. Numbers video, I'm not really able to figure out how to calculate l and ml
    (1 vote)
    Default Khan Academy avatar avatar for user
    • mr pants purple style avatar for user Ryan W
      For any value of n, possible values of l are integers from 0 to n-1
      Each possible value of l represents a type of orbital.
      When n=1 the only possible value of l is 0, so the first (n=1) shell only has an s orbital
      When n=2 the possible values of l are 0 and 1, so the second (n=2) shell has s and p orbitals
      When n=3 the possible values of l are 0, 1 and 2, so the third (n=3) shell has s, p and d orbitals
      See where this is going?

      For any value of l, possible values of ml are integers from -l to +l
      The number of possible ml values tell us how many of that orbital there are.
      When l=0 the only possible value of ml is 0, this tells us there is only one s orbital per shell
      When l=1 the possible values of ml are -1, 0 and +1, this tells us there are three p orbitals per shell (from the second shell onwards)
      When l=2 the possible values of ml are -2, -1, 0, +1 and +2, this tells us there are five d orbitals per shell (from the third shell onwards)
      (2 votes)

Video transcript

- [Voiceover] Let's look at how to write electron configurations for the first period. And so here's the first period in the periodic table, and we have only two elements to worry about. We have hydrogen and then over here we have helium. So let's start with hydrogen, atomic number of one. So if there's an atomic number of one, that means there's one proton for hydrogen. In a neutral atom, the number of protons is equal to the number of electrons. So if there's one proton there must be one electron. So our goal is to write an electron configuration for that one electron of hydrogen. And we're gonna use the Aufbau principle. Aufbau is German for "building up". Because as you write electron configurations you're thinking about the best way to build up an atom. So you're thinking about where to put your electrons. Here we have only one electron to worry about. So where's the best place to put the one electron for hydrogen? Well, we wanna put that electron as close to the nucleus as possible, in order to maximize the attractive force between the positive charge and the negative charge. So therefore, the electron goes into the lowest energy level possible. And that's when n is equal to one. So we talked about quantum numbers earlier, if n is equal to one there's only one allowed value for l, and that's equal to zero. If l is equal to zero, there's only one allowed value for ml right? So the magnetic quantum number, that's equal to zero. So l is equal to zero tells us we're talking about an s orbital, and this tells us how many orientations. Only one value so only orientation for an s orbital. An s orbital is shaped like a sphere right? So in this sphere, in this three dimensional volume here, this is the most likely place, the most likely region we're going to find this one electron. And so the electron for hydrogen is going to go into an s orbital. An s orbital in the first energy level. So let's go ahead and write the electron configuration. We write the electron configuration as one s one. Let's talk about what those mean here. So this first one, this is talking about the energy level right? The shell, n is equal to one. S says the electron for hydrogen goes into an s orbital. And this superscript one here, this is telling us how many electrons are in that orbital. And here of course we're talking about only one electron. So one s one means one electron in an s orbital in the first energy level. There's another way to write an electron configuration, or to draw one out, it's called orbital notation. So you draw a line here, which represents an orbital. We're talking about an s orbital in the first energy level, so we could label this orbital as being the one s orbital. And we put the one electron of hydrogen into that one s orbital. And let's say the electron enters the orbital spin up. So this arrow pointing up is representing one electron with an up spin. So the fourth quantum number ms we could say that's positive 1/2 spin. So here are two ways to write the electron configuration. One s one, or we could draw orbital notation like that for hydrogen. Alright, and so we're done with hydrogen's one electron. Let's move on to helium now, so two electrons to worry about. So atomic number of two, so two protons and two electrons. So two electrons to worry about. We're still in the first shell, we're still in the first energy level. So n is equal to one. If n is equal to one, l must be equal to zero. Ml must be equal to zero, and so we're still talking about an s orbital in the first energy level right? So we're still talking about an s orbital in the first energy level. So for helium right? An s orbital in the first energy level, like that. Alright, let's think about orbital notation for helium here. So we have two electrons, so an s orbital in the first energy level. So we could draw the first electron for helium as spin up. And the second electron for helium, we would have to do that spin down. So we have to pair the spins, one spin up and one spin down. So why do we have to do that? So let me go ahead and write, I'm gonna write negative 1/2 here for the spin. The reason we have to pair the spins is because of the Pauli exclusion principle, which says that, "No two electrons in an atom can have "the same four quantum numbers." So this first electron that we put in, the one s orbital right? So this one right here is spin up, that would be these same four quantum numbers as, that would be these four quantum numbers up here. So instead of rewriting them, I'll just circle them for hydrogen. And so for this second electron here, the one that I put in the orbital spin down, that can't have the same set of quantum numbers. So n is equal to one, l is equal to zero, ml is equal to zero, all those have to be the same, but the last one here is different. That's why we make it negative 1/2 so it's spin down. And so the two electrons in helium have a different set of four quantum numbers right? They differ by the last quantum number. And so that's the idea of the Pauli exclusion principle. As a consequence of the Pauli exclusion principle, an orbital can contain a maximum of two electrons, because you've exhausted all of the possible combinations of quantum numbers. We've used them up completely. And so the one s orbital is completely full. So we could also write the electron configuration for helium right, as one s two. And once again what that means, is we're talking about an s orbital, s orbital in the first energy level, and there are two electrons in that s orbital. So one s two is the electron configuration for helium. And since we have two electrons in the one s orbital, we can't fit in any more electrons. And so the first shell is closed. We have a closed shell. There are no more orbitals in the first energy level. If you wanna add another electron, you have to move on to the next shell. And so that takes us into the second period on the periodic table.