If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content
Current time:0:00Total duration:4:02

Visualizing chemical equations using particulate models

AP.Chem:
TRA‑1 (EU)
,
TRA‑1.C (LO)
,
TRA‑1.C.1 (EK)

Video transcript

- [Instructor] A question that some of you might have asked, or maybe haven't asked is where do we get our hydrogen from? Because molecular hydrogen, if it was just in the air, it is lighter than the other things that make up the air, so it would just float to the top of the atmosphere. So how would we get it? Well, this reaction right over here is actually one of the most cost-effective ways of getting molecular hydrogen, which you can see right over here on the right. What do you do at a very high temperature? What I would consider a high temperature, roughly between 700 and 1,000 degrees Celsius, you get some methane gas in the presence of water. And of course, water at that temperature is going to be a gas, we're talking about steam. And then they will react to produce carbon monoxide and molecular hydrogen. Now something might be feeling a little off when I wrote this reaction like this. So pause this video and think about what is off here. And I'll give you a little bit of a hint. Think about what are we inputting? What are the atoms and the number of atoms that we're inputting into the reaction? And then what are the number and the types of atoms that we are outputting? For example, we have one carbon that we are inputting between the methane and the water. And we have one carbon that we are getting out on the other side. Think about that for the oxygen and the hydrogens, and see whether it all makes sense. All right, now let's work through this together. And actually to help us visualize, instead of just writing it in this form, I'm also gonna try to visualize the various molecules. So this right over here is a methane molecule. You have one carbon that is bonded to four hydrogens. You can see that up there, CH4, CH4. Here we have a water molecule. You have an oxygen that is bonded to two hydrogens. And then they react. You get a carbon monoxide molecule, or this is how I've visualized it. So you have a carbon and an oxygen. And then I draw the molecular hydrogen. Molecular hydrogen has two hydrogens bonded to each other. And that is what I have depicted here. Now based on the hint I gave you before I asked you to pause the video, you will notice that we have a carbon on the input side, you have it right there. And we have one carbon on the output side. So that seems to obey conservation of mass. Now what about for the oxygens? Well, we have one oxygen between the methane and the water that we're inputting into the reaction and we have it drawn right over here. And then we have one oxygen that we are outputting on the output side of our reaction right over here. Now what about the hydrogens? Well, on the left side of our reaction, right over here, we have four hydrogens plus another two or six hydrogens. You can also count them here: one, two, three, four, five, six hydrogens. While on the right hand side, we only have two hydrogens, and they're in one hydrogen molecules. So what happen to the other four hydrogens? They can't just disappear. We have to have conservation of mass. So we need to have another four hydrogens on the right-hand side of this equation. Well, how can we have another four hydrogens? Well, that's if we have two more molecules of hydrogen. So that's one, and then that is two. So instead of just having one molecule of molecular hydrogen that has two hydrogen atoms in it, we now have three. So to balance this chemical equation, all we have to do is say, okay, we don't just have one, one molecule of hydrogen here, we have three molecules of hydrogen. And what I have just done is balance the chemical equation. It's just making sure that we have a conservation of mass, that we don't have constituent atoms on the left-hand side that somehow disappear on the right hand side, or we don't have constituent atoms that somehow appear on the right hand side without ever being input into the reaction.