Main content
Chemistry library
Course: Chemistry library > Unit 15
Lesson 2: Enthalpy- Calorimetry and enthalpy introduction
- Enthalpy
- Heat of formation
- Hess's law and reaction enthalpy change
- Worked example: Using Hess's law to calculate enthalpy of reaction
- Bond enthalpy and enthalpy of reaction
- Bond enthalpies
- 2015 AP Chemistry free response 7
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Calorimetry and enthalpy introduction
Today's episode dives into the HOW of enthalpy. How we calculate it, and how we determine it experimentally...even if our determinations here at Crash Course Chemistry are somewhat shoddy.
Writers: Edi Gonzalez
Chief Editor: Blake de Pastino
Consultant: Dr. Heiko Langner
Director/Editor: Nicholas Jenkins
Sound Designer: Michael Aranda
Graphics: Thought Cafe
Want to join the conversation?
- If in the experiment some energy is loss to the surroundings due to poor insulation, then why was the experiments enthalpy change greater than the calculated value. Shouldn't it be less as some energy was lost from the system so the temperature would be lower than expected?(6 votes)
- At, how does the ability to calculate change enthalpy tell pilots how much fuel they have left? 2:20(2 votes)
- Pilots use the calculation to see how energy is made per gallon, liter, etc., to keep the planes going.(6 votes)
- Isn't this true that a human stomach also consists of HCl which is hydrochloric acid......but then if it is an acid and can destroy our skin, then how is it stored and present in our stomach.....?(2 votes)
- The stomach wall is protected from the acid by a layer of mucus.
How the hydrochloric acid gets into the stomach is interesting, but complicated. If you are interested to know more, Scientific American have a concise article - https://www.scientificamerican.com/article/why-dont-our-digestive-ac/.(4 votes)
- At, he says that the calorimeter and surroundings absorbed some of the heat that could have gone into raising the temperature of the solution. In spite of this, the calculated heat released using Hess' law is still lower than the empirical one. How? 10:28(3 votes)
- What is the difference between heat and enthalpy?(3 votes)
- Heat is the energy created from a type of system that works/moves. Enthalpy is the thermodynamic quantity equal to the total heat content of a system.
You can learn more about the difference on this website: http://www.differencebetween.com/difference-between-enthalpy-and-vs-heat/(1 vote)
- Why is energy released when bonds formed and absorbed when bonds break?(1 vote)
- Atoms often like to form bonds. When an atom bonds with another atom, the resulting bond has a lower potential energy state than when there were two separate atoms. The difference is released as energy, and if you want to break that bond and return to having two separate atoms, then you need to put that energy back in to pull the atoms apart.
This diagram shows how the potential energy decreases as two hydrogen atom approach each other and bond - http://images.tutorvista.com/cms/images/81/potential-energy-curve-H2-molecule.png.(5 votes)
- I have a huge confusion in my chemistry class. My teacher asked us to calculate an enthalpy change of 50 ml sulphate acid 0.1 M and 5 ml sodium hydroxide 0,1 M neutralisation. The reaction is "H2SO4 + 2NaOH --> Na2SO4 + 2H2O". She told us to calculate limiting reactant's mole first, then count the enthalpy change. Both products had different mole. She told us to calculate the enthalpy change based on that mole. Which one of mole should I use? Mole of Sodium Sulphate or Water? I had tried on both of them, it gave me different results. I apologise if I am unclear, English is not my mother tongue.(1 vote)
- How to tell if a reaction is going to be endothermic or exothermic?(1 vote)
- If it is endothermic the external temperature will be cold, if It is exothermic it will be warm. Endothermic takes in heat from its surroundings, Exothermic releases heat to its surroundings. Also in the question if it mentions temperature, look at the initial and final temperature, it the final is higher than the initial then its exothermic, if the final is lower than the initial then it is endodermic.(2 votes)
- Why exactly do we need to stir rapidly once both solutions are poured into the calorimeter. Could one reason be to minimize heat loss?(1 vote)
- For a reaction to happen, any reaction, the reactants actually have to physically come into contact with one another and collide with each other. Stirring a reaction helps bring all the reactants into contact with one another so the reaction occurs fully. If you don't stir your reaction sufficiently you run the risk of having an incomplete reaction which messes with your calculations for things like stoichiometry and calorimetry. Hope that helps.(2 votes)
- what's the difference between heat and temperature?(1 vote)
- Heat is the total energy of the molecular motions in an object, while temperature is the average energy from motion in the object. Heat is the total, Temperature is the average.(2 votes)
Video transcript
- Hydrochloric acid,
every chemist's frenemy as terribly dangerous as
it is terribly useful. It'll burn your skin, your eyes, even your mucous membranes if you breathe in its fumes for too long. But HCl as an acid gives up
its hydrogen pretty easily, which makes it good for making things like fertilizers and
dyes and even table salt. Then there's sodium hydroxide, another substance that
I wouldn't wish to be on my worst foe, although,
I'm glad we have it. You might know it as lye, an
extremely caustic substance that's used for everything
from clearing clogged pipes to purifying drinking water. It's a base. It readily accepts the
protons that acids release. So what do you think'll
happen when I mix solutions of two things together. Will they just cancel each
other out and do nothing? Or will they explode or maybe
I'll travel through time? Well, if you've been paying attention, you already know what's gonna happen. They're gonna undergo a
neutralization reaction, which we've talked about before. These two potentially deadly substances will form harmless salt and water. But the reaction will also have an effect that you can actually feel. It will release heat and
not just a little heat. Mixing concentrated acids and
bases releases so much heat that it can result in an explosion. But I will show you how to product a safe but noticeable amount of
heat with this reaction. To me, the coolest part of this is where the heat actually comes from. The energy used to exist
as part of chemical bonds in the acid and the base. Just like a ball at the top of a hill, molecules always move toward a lower energy state if they can. And that's just what they'll do. High energy bonds will
break and lower energy bonds will form the change in energy
between those two states you can actually feel the effects of. And that's pretty dang cool. And what's even more
awesome, if you ask me, is that we can actually figure out exactly how much heat will
be released by this reaction. (quirky music) Remember that measuring heat change is closely related to enthalpy, which we defined as the
internal energy of a system plus the energy that it uses
to push the surroundings back and make room for its
own pressure and volume. And at a constant
pressure, like we have here at the surface of the earth, that works out to be exactly the same as the heat that's absorbed
or released by a reaction. Naturally, it could be very useful to know how much heat a chemical
reaction absorbs or releases. In addition to the exothermic hand warmers that we looked at, there
are also endothermic chemicalized packs for treating injuries. The ability to calculate
change in enthalpy is also what tells pilots how far the fuel that an airplane's tank
will allow it to fly, which I am personally very interested in making sure they get right. One of the ways we can
calculate the change in enthalpy of a system is with Hess's law, which you'll recall states
that then total enthalpy change for a chemical reaction doesn't depend on what pathway it takes, but only on its initial and final states. It's all been expressed in
terms of standard enthalpy's of formation. That is the amount of heat lost or gained when one mole of a compound
is formed from its elements. That's how we figured
out exactly how much heat my hand warmers release. Well, that's not the only way
that Hess's law can be used. The law itself says nothing about standard enthalpies of formation. Any way that we can figure out the change in heat between the
products and the reactants will work just as well. And that's where calorimetry comes in. Calorimetry is the science
of measuring the change in heat associated with
a chemical reaction. And this may look like a
plastic bottle inside of koozie, but it's actually a calorimeter. A calorimeter can be fancy, an
expensive piece of hardware, or it can be simple. But no matter what it looks like, it's basically just an insulated container that contains a thermometer and it can be made out of stainless steel or styrofoam cups, but there really are no fundamental differences in how they work. And you know the general setup by now. The chemicals in the calorimeter make up the thermodynamic system. And everything else is the surroundings. The insulation minimizes
the amount of heat that leaks in or out of the system so that we can be fairly confident that any heat transfer
is part of the system not the surroundings. The thermometer tracks
the temperature change, which is part of the
calculation we have to do. And there's usually some
way to stir the solution to make sure that the
reaction occurs fully. All right, everybody, safety first. Though I really should be wearing gloves. I'm gonna put 100
milliliters, also a 100 grams of HCls, one more HCl solution
into my calorimeter here. All wash-a-buh. And now I'm going to put the same amount of sodium hydroxide solution. Before I do the reaction, I have to know our starting temperature. So I'm gonna stick my thermometer in there and wait for a second to see what it does. It should be roughly room temperature. It's been in the room for a long time. So we are currently at
like 20.8 degrees celsius. So that's like 294 kelvin. And now I shall add my 100
milliliters of sodium hydroxide. Woop. The temperature, unsurprisingly,
is rising very rapidly. And I'm doing something right now that you should never ever do, which is stir with a thermometer, because if this happens in
schools across the world, then there will be a million
billion broke thermometers. And the stuff inside of these
thermometers is not good. So never do what I'm doing. All right, the temperature
should be stable by now. We have 28.2 degrees celsius. Now there's a simple
formula that allows us to calculate the heat change of a reaction simply by measuring the
change in temperature that occurs in a calorimeter. It says that the change in heat equals the specific heat
capacity of the substance times its total mass, times
the change in temperature. Let's examine the parts of this. First of all, the heat change
in the calorimeter formula is normally represented by a lowercase Q, but it can also be represented
by change in enthalpy, or delta H, because remember
at constant pressure, delta H equals q, and constant pressure is almost always a good assumption for the duration of an experiment, or at least as long as we stay at the surface of the earth. For reasons that will become clear later, we'll use delta H to
represent the heat change for this experiment. Specific heat capacity
represented by a lowercase S is the amount of heat required
to raise the temperature of one mass unit, like a gram and kilogram of a substance by one degree Celsius. So it turns out that
different amounts of heat create different temperature changes, like metals get hot really easily and cool down really easily. Others, like water, require
a lot of thermal energy to raise the temperature, and therefore have to release
a lot of heat to cool down. I'm always wondering,
though, like what does that really mean, like
physically in the molecules? Shouldn't heat raise the
temperature of all substances equally and why does water in particular have such a high specific heat capacity? Heat energy can do a lot of things besides just increase temperatures. Temperature, or the speed at
which molecules bounce around is just one way that atoms or
molecules can absorb energy. Heat energy can also be absorbed by the breaking and formation of bonds between molecules. And as we'll learn in another episode, the extremely high specific
heat capacity of water is due to the breaking in formation of hydrogen bonds that are associated with relatively small
changes in temperature. And how do we know the
specific heat capacity? Well, I am happy to report
that some noble chemists have worked hard to determine
the specific heat capacities of hundreds of substances
so that we don't have to. We just have to look up
the numbers in a table. Okay, so a specific
heat capacity times mass times the change in temperature. The mass is important because
the more mass of a substance we have, the more chemical
bonds that are present. And because energy is
contained in chemical bonds, they have a big effect on how much energy we're able to absorb or release. And, finally, there's the
change in temperature. When doing calorimetry, we
calculate a change in heat by measuring a change in temperature. But, as we've said a billion times before, heat and temperature
or not the same thing., Please do not think that
this thing is measuring heat, because it's not. It's just that luckily,
in this specific case, they are related by our handy
little calorimeter formula. Now, you might not have noticed, but we are right at the interface between chemistry and physics here. Each science could claim
ownership over these phenomena. But the truth is that humans
made up the difference between chemistry and physics anyway. Thermodynamics, the study
of heat, energy and work, doesn't care about our little rules. Thermodynamics itself makes
the rules of the universe. It is the ultimate law. So now you know, even though
you might not have cared, but you should, because it's cool. It's all wiggly wobbly bondy wondy. All right, enough talk. Let's get out there and
actually do some math here. Now, remember that the formula
is delta H, sm delta T. The solutions we're
using here are so dilute that almost all of their
mass consists of water. Therefore, we can simply use the specific heat capacity of water. If we look that up on a table, we'll see that it is 4.184
joule per gram degrees celsius. I used a 100 grams of each chemical for a total mass of 200 grams. And, finally, we need
the temperature change. If you remember, the
temperature rose from 294 kelvin to 301.4 kelvin. The difference between
these two is 7.4 kelvin. It's a positive value because
the temperature increased. Cancel all the appropriate units and then bang on the calculator to get a final release of 6192.32 joules. So we're at 6.2 kilojoules
of heat from the reaction. Because this formula is
based on temperature change and since the temperature increased, we end up with a positive result. But, most importantly,
it tells us the magnitude of the change in heat energy. So I wonder how that compares to the amount we would
predict using Hess's law and the standard enthalpies of formation. Remember that we can look up the standard enthalpies of formation for all the products and reactants in the back of a textbook or online. The chemical reaction
between hydrochloric acid and sodium hydroxide produces liquid water and sodium chloride. The standard enthalpy of
formation for hydrochloric acid is negative 167.2 kilojoules for mole. For sodium hydroxide, it's negative 469.15 kilojoules per mole. For liquid water, negative 285.8. And for sodium chloride, negative 407.27. I'm not gonna do the mole
calculations on screen. But trust me when I say that
we used 0.100 mole of Hcl and the same amount of NaOH, because everything in
the equation balances, it's just a one to one
to one to one ratio, we can assume that they
all have the same amount of each product as well. If we plug these into Hess's
law and do the calculation, we found that the change in
heat or enthalpy of the reaction is negative 5.67 kilojoules. The system is releasing or losing energy so the number is negative. But, again, it's really the
magnitude that we wanna know. So there you go. The calorimetry formula gave
an absolute enthalpy change of 6.2 kilojoules, while
Hess's law gives a change of 5.67 kilojoules. So why the difference? Well, the greatest factor
is probably that we use the specific heat capacity of pure water instead of the saltwater
that we actually created. We also didn't include the heat capacity of our calorimeter itself. The calorimeter walls
and the the thermometer were heated too, resulting
in some of the produced heat not being accounted for. The insulation of the calorimeter
is obviously a bit light, which allowed some heat
to escape entirely. And that's another major factor. And so I'd say we did pretty well. The important thing is that it showed us what we need to say even though it was just a little
plastic bottle in a koozie. For a quick simple method,
the calorimeter got us pretty close to the calculated value. If we were calculating the
amount of a particular fuel that we would need to travel to Mars or inventing a cold pack that
won't give you frostbite, we'd wanna use a more sophisticated system and work more carefully. But this one's pretty
cool for our purposes.