Main content
Chemistry library
Course: Chemistry library > Unit 11
Lesson 2: Introduction to intermolecular forces- London dispersion forces
- Dipole–dipole forces
- Hydrogen bonding
- Ion–dipole forces
- Intermolecular forces and vapor pressure
- Solubility and intermolecular forces
- Surface tension
- Capillary action and why we see a meniscus
- Boiling points of organic compounds
- Boiling point comparison: AP Chemistry multiple choice
- Solubility of organic compounds
- 2015 AP Chemistry free response 2f
- Intermolecular forces
- Intermolecular forces and properties of liquids
- Solubility
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Capillary action and why we see a meniscus
A meniscus is a curved liquid surface that results from the interplay of adhesion (the liquid's attraction to its container) and cohesion (the liquid's attraction to itself). Adhesion also drives capillary action, which draws a liquid up a narrow tube.
Want to join the conversation?
- A huge thanks to Sal and the Khan Academy Team for putting togather this informative video. I had one question though - at aroung 8:6 in the video, Sal begins describing how water can soak upwards in a paper towel because of capillary action. However the video did also say that capillary action can only occur with an polar compound as a surface. Since paper towels are made of cellulose and other organic polymers which, to the best of my knowledge, are not polar molecules, how is this possible?(31 votes)
- Most cloth towels are made of cotton, and paper towels are generally made from paper pulp. Both consist of long molecules of cellulose that contain many −OH groups. Water wicks up a paper towel because of the strong attractions of water molecules to the −OH groups on the towel’s cellulose fibers and the strong attractions of water molecules to other water molecules.(24 votes)
- why is mercury bending upwards(15 votes)
- That is called a convex meniscus (it vertex is at the top). This happens when the cohesion of the substance (how much its atoms or molecules are attracted to each other) is greater than their adhesion (attraction) to the container they are in contact with.
The other form occurs when the adhesion to the container is greater than the cohesion of the substance, resulting in the vertex of the curve being at the bottom.(56 votes)
- Capillary action occurs, but why does the water stop in a place at some extent?(13 votes)
- Eventually the force of gravity balances out the forces pulling the water upwards and it stops. You can read about more in-depth here:http://water.usgs.gov/edu/capillaryaction.html.(18 votes)
- Khan said that the reason for the concave meniscus in a glass tube was the water molecules bonding with the glass molecules. Is that the reason why some water stays in a glass of water after you drink it or pour it out?(16 votes)
- Exactly! Capillary action, and adhesive forces are responsible for concave meniscus and 'leftover' of water in glasses.(12 votes)
- Water has hydrogen bonding.what about mercury?does mercury repel glass tube?what is the force which makes mercury have more cohesive nature than adhesive nature?(8 votes)
- The mercury atoms are strongly attracted to each other by metallic bonds.
Mercury is attracted to the glass, but the cohesive forces in mercury are stronger than the adhesive forces between mercury atoms and the glass.(10 votes)
- AtSal says that you won't see meniscus in plastic because it doesn't have the same polarity as the glass. Is this true for every kind of plastic? 5:56(7 votes)
- Glass is polar. So why doesn't it dissolve in water like glucose(a polar molecule)?(6 votes)
- The atoms in glass are covalently bonded together into what is effectively a giant molecule — these covalent bonds are too strong to be disrupted by interaction with water molecules.
Also note that only the surface of a glass is actually polar — this polarity at the surface is reportedly due to the exposed oxygen atoms that aren't bonded to silicon (most of which bond to a hydrogen to form hydroxyl groups), the rest of the glass is nonpolar due the symmetric (tetrahedral) geometry of the bonds around each silicon atom.
References:
https://chemistry.stackexchange.com/questions/30791/why-is-sand-glass-polar-how-does-lattice-structure-change-polarity
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024753/(6 votes)
- At, how are MORE of the water molecules able to get in contact with the polar glass lattice? What is so special about the thin glass tube that allows this to happen. Sal didn't explain that clearly. 6:52(7 votes)
- First: the chemical composure of glass (Si and partially negative O)
and chemical composure of water (O and partially positive H).
Then you can see how adhesion takes place between partially negative 0 of glass and partially positive H of water.
The glass tube is very narrow in its diameter which enables it to create capillary action - water molecules are 'climbing upside' against the gravitational force.
In case the glass tube is wider, adhesion would be still present but not at the same degree, therefore, there would be no capillary action and climbing upon.
Is this helpful? :)(4 votes)
- What would happen if you put salt water in it(6 votes)
- Very interesting question and I had to an extensive google search too! You will still see a meniscus but because the salt water disturbs the surface tension of water, the meniscus too will be different -- this is hopefully nto surprising.
How it will be affected, I am not sure and this is what I was trying to figure out: compared to amount of water, there is only a tiny bit of salt. The water does not become any more/less polar than it already is (although it will now conduct elecricity) , which is a property for the meniscus to form. If there is any difference at all, I expect it to be very marginal...(4 votes)
- So if water is held in containers made of different materials, it may have meniscus of different shapes depending on the electrnegativity of the material?(5 votes)
- Actually it depends on the liquid itself and chemical bonding. In most cases, menisci are concave due to molecules of liquids more strongly attracted to the walls of the tube than to each other.(2 votes)
Video transcript
- If you were to take a glass beaker, so let me draw it right over here. If you were to take a glass beaker and you were to fill it up with water, you might expect that the surface of the water would be flat. But it's actually not the case and I encourage you to try it. You might have even observed this before. The surface of the water will not be flat. The surface of the water
will actually be higher near the glass than it is
when it's away from the glass. It forms a shape that
looks something like that. And so the first thing we might ask is what'll we call this thing. And this right over here
is called a meniscus. Meniscus. And in particular this meniscus, because the fluid is
higher near the container than it is when you're
away from the container, we would call this a
concave, concave meniscus. And you might say, "Well if
this is a concave meniscus, "are there any situations where might have "a convex meniscus?" Well sure, you can have a convex meniscus. If you were take that same glass beaker, instead of filling it with water if you filled it with say, mercury. If you filled it with mercury, you would get a meniscus
that looks like this where there's a bulge near the center when you're further
away from the container than when you're at the container. And so let me just label this. This is a convex, convex meniscus. But it's one thing to just
observe this and to name them. To say, "Hey this is a meniscus." So this is a concave meniscus. But a more interesting question is why does it actually happen. And so you might imagine
this concave meniscus is because the fluid is more attracted to the container than it is to itself. And you might be saying, "Wait, wait. "Hold on, hold on a second here. "We've been talking about how water "has this polarity, it
has partial negative end. "Each water molecule
has a partially negative "and has partially positive
ends at the hydrogens." So let me write this down. Partial positive charges at the hydrogens. And that causes this
hydrogen bonding to form and that's what kind of gives water all of these special properties. "You're telling me that
it's more attracted to the glass than it is to itself?" And I would say, "Yes,
I am telling you that." And you could imagine
why it is going to be more attracted to the glass than itself, because glass actually has, the molecules in glass
actually are quite polar. Glass, typically made up
of silicon oxide lattice. For every one silicon atom,
you have two oxygen atoms. You see that right over here. For every one silicon,
you have two oxygen atoms. And it turns out that the
electronegativity difference between oxygen and silicon is even higher than the electronegativity difference between oxygen and hydrogen. Silicon is even less
electronegative than hydrogen. So the oxygens are really able
to hog silicon's electrons. Especially the ones that
are involved in the bonding. So you have partial charges,
partial positive charges form at the silicon
and then you still have partial negative charges
form around the oxygens. Form around the oxygens. So these are partial negative. And partial positive at the silicon. And so you could imagine what's going to happen at the interface. And let me make this
clear what's going on. This, what I am circling
right now, that is the water. This right over here,
that's the water molecules. And what we see over here, what we see over here, these
are the glass molecules. So this is the glass right over here. And sure the water is attracted to itself because of the hydrogen bonds. But it has some kinetic energy, remember these things are jostling around, they're bouncing around,
we're in a liquid state. And so you can imagine all of a sudden, maybe this, let me see,
maybe this character, this water molecule right over here. Maybe a moment ago it was right over here but it popped up here. It just got knocked by another molecule, it had enough kinetic
energy to jump up here. But once it came up, came in contact with the glass surface right
over here, the glass molecules. It stuck to them. Because its partially positive end, its partially positive
end at the hydrogens. Let me do it in that green color. The partially positive
end at the hydrogens would be attracted to the
partially negative ends of the oxygens in the glass. And so it'll stick to it. This is actually a stronger partial charge than what you would
actually see in the water because there's a bigger
electronegativity difference between the silicon and
the oxygen in the glass than the oxygen and the
hydrogen in the water. So these things just keep bumping around. Maybe there's another water molecule that just get knocked in the right way. All of a sudden for, you know, a very brief moment it
gets knocked up here. And then it's going to stick to the glass. And this phenomenon of something sticking to its container, we
would call that adhesion. So what you see going on here, that is called adhesion, adhesion. And adhesion is the
reason why you also see the water a little bit higher there. When you talk about
something sticking to itself, we call that cohesion. And that's what the hydrogen bonds are doing inside the water. So this right over here, that over there, that is co-, that is cohesion. So that's why we have things, why we observe a meniscus like this. But there's even more fascinating
properties of adhesion. If I were to take, if I were
to take a container of water. If I were to take a container of water. And just to be clear what's
going on here with the mercury, the mercury is more attracted to itself than it is to the glass container, so it bulges right over there. But let's go back to water. So let's say that this
is a big tub of water. I fill it. So, I fill the water right over here. And let's say I take a glass tube, and the material matters. It has to be a polar material. That's why you'll see
the meniscus in glass, but you might not see
it or you won't see it if you were dealing with a plastic tube because the plastic does
not have that polarity. But let's say you were
to take a glass tube, a thin glass tube this time. So much thinner than even a beaker. So you take a thin glass tube
and you stick it in the water, you will observe something very cool. And I encourage you to do this if you can get your hands
on a very thin glass tube. You will notice that the
water is actually going to defy gravity and start climbing
up this thin glass tube. And so that's interesting. Why is that happening? Well this phenomenon which
we call capillary action. Capillary, capillary action. The word capillary, it'll
refer to anything from you know, a very, very narrow tube and we also have capillaries
in our circulation system. Capillaries are our
thinnest blood vessels, those are very, very, very, very thin. And there's actually capillary action inside of our capillaries. But what we're seeing here, this is called capillary,
capillary action. And it's really just this
adhesion occurring more intensely because more of the water
molecules are able to come in touch with the polar glass lattice. And so you can imagine we have glass here. If you also had glass over here. And actually it would be very hard to find something that thin that's on the order of only a few molecules. But this is, I'm not
drawing things in scale. You can imagine now okay, maybe another water
molecule could jump up here and stick to the glass there. And one just gets bumped the right way, jumps up and jump there. And if we didn't have a polar container, if we didn't have a hydrophilic container, well then the thing might
just jump back down. But because it went up there,
it kind of just stuck to it. And then it's vibrating there and then maybe another water
molecule gets attracted to it because of its hydrogen bonds. Then it gets bumped the right way. And then it gets bumped with the higher part of the container
but then it sticks there. And so it starts climbing the container. And that's what capillary action is and it's not just some neat parlor trick, we actually probably use capillary action in our every day lives all the time. Beyond the fact that
it's actually happening in your capillaries in your
body that allows you to live, but if you have a, if you spill
something on your counter. So let's say that's a
spill right over there. You spill some maybe,
you spill some water, or you spill some milk. And if you take a paper towel. If you take a paper towel. In fact, if you took a
paper towel like this. If you held it vertically,
you will see the water start to be absorbed into the paper towel. This kind of absorption
action that you see, that actually is capillary action. It's the water going into
the small little gaps of the paper towel, but
that's because it is attracted to the actual paper towel.