If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Gas mixtures and partial pressures

AP.Chem:
SAP‑7 (EU)
,
SAP‑7.A (LO)
,
SAP‑7.A.1 (EK)
,
SAP‑7.A.2 (EK)
For a mixture of ideal gases, the total pressure exerted by the mixture equals the sum of the pressures that each gas would exert on its own. This observation, known as Dalton's law of partial pressures, can be written as follows:  P (total) = P ₁ + P ₂ + P ₃ + ... where P ₁, P ₂, and P ₃ are the partial pressures of the different gases in the mixture, and P (total) is the total pressure of the mixture.. Created by Sal Khan.

Want to join the conversation?

  • blobby green style avatar for user Simone
    At why is the total pressure 2.5atm, where did that number come from and how did you calculate it?
    (10 votes)
    Default Khan Academy avatar avatar for user
    • duskpin ultimate style avatar for user Stephanie Fan
      The number 2.5atm was just made up as a starting value for the question, and wasn't calculated from anything. The part that was calculated was "what is the partial pressure of the oxygen in the container, since the pressure changed from 2.0atm to 2.5 atm when we added oxygen in with the nitrogen?"

      Hope that helps.
      (26 votes)
  • blobby green style avatar for user S26Patel
    Hello. When you add molecules of oxygen gas to the nitrogen gas, why does the number of moles (n) stay the same?
    (10 votes)
    Default Khan Academy avatar avatar for user
    • hopper jumping style avatar for user Yuya Fujikawa
      Yes, when we added O2 molecules, we did change the number of moles in the container. However, in the video, She is saying that the number of moles of N2 didn't change since we only added some molecules of O2. Pressure is dependent on 3 factors. (i.e. T, V and n) Since we didn't change any of these factors for N2, n of N2 stays the same.
      (11 votes)
  • male robot hal style avatar for user Vatsav Sethupathi
    Does it not make a difference wether the particles are colliding with each other and so the temperature increases which leads to the change in pressure?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • piceratops tree style avatar for user Lemondemon
    Air is made up of different types of gases and all these gases considered to be ideal.
    They all are in same space so the factor V is same for all.
    They are at the same temp, and being similar in mass, volume since they are "ideal" they all would have same average KE. So T is also same for all.
    The only thing however is different is n.
    So doesn't that mean just knowing n of each gas can give us their Partial pressure?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • piceratops tree style avatar for user Lemondemon
    there was initially 4 nitrogen molecules exerting a P of 2 atm then we added 4 oxygen molecules but the total P wasn't 4 atm.
    This means O and N have different P, and since V and n is same, then they must be different in terms of T.
    But won't the temperature of both N and O be same after a while? If that is so then after a while N and O won't have the same Partial pressure we calculated it has just after adding them together?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • piceratops seed style avatar for user RogerP
      You're taking the diagrams in the video too literally. They are meant to be symbolic and they don't accurate represent the amounts of each gas.

      Although the diagrams suggest that the number of molecules (or moles) of nitrogen equal those of oxygen, this cannot be the case for an ideal gas, given the pressures referred to in the video. For the total pressure to be 2.5 atm after adding the oxygen, then there must be four times the amount of nitrogen than there is oxygen.
      (6 votes)
  • duskpin ultimate style avatar for user Ridha
    Why is R the same? Don't different gases have different gas constants? Or is R the same for simplicity, to make the problem easier to answer?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • hopper cool style avatar for user Iron Programming
      The gas constant, R, is the same for all gases.

      Anytime you here that is something is proportional to something else, like x is proportional to y, then another way to say that is that x = ky where k is some constant.
      In physics & chemistry we figure out that we have proportional relationships: but then we need to figure out how exactly they are proportional, which we figure out through experimentation.

      Remember that the gas law was discovered using 3 observations of 3 people:
      Boyle's Law --> V ∝ 1 / P,
      Charles's Law --> V ∝ T,
      Avogadro's law --> V ∝ n

      Then, we wanted to find some way to combine these 3 proportional relationships, and so we did that using the gas law.
      V = nRT/P

      Note that we are really just combining the 3 said relationships, and we put the constant there to define the proportionality. Also it is often seen as PV = nRT.

      Hope this helps,
      - Convenient Colleague
      (4 votes)
  • mr pants teal style avatar for user Frederick Lee
    I know according to the Ideal Gas Equation, pV=nRT, the removal or addition of gases from a mixture does not affect its partial pressure. But if we see the formula for partial pressure which is mole fraction multiplied by the total pressure. And mole fraction is the number of moles of a particular molecule divided by the total number of moles.

    By removing or adding any gases, wouldn't the total number of moles change? Hence causing the mole fraction and partial pressure to change as well..
    (3 votes)
    Default Khan Academy avatar avatar for user
  • marcimus pink style avatar for user Tessie
    If i am given the total pressure, how can i get the partial pressure of the individual gases that make the gas mixture since the gases apply different pressure on the container
    (1 vote)
    Default Khan Academy avatar avatar for user
  • piceratops seedling style avatar for user BrianMedina86
    My question is what would you do if they only gave you the total pressure and asked you to find the partial pressures of the other gases. That's what has me confused.
    (1 vote)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Anany Sharma
      Total pressure is just a sum you cannot find partial pressure of 2 gases from it just like x+y=8 now x&y can be 6,2 or 4,4 or any other number you need to know one to be able to find out the other
      Now to be able to find it the partial pressure of any gas the question must give the either the partial pressure of one gas and the total pressure or it should give the total pressure and total number of moles of in a container as well as the individual number of moles of gases involved if moles are given we use
      P1=(N1/Nt)Pt here p1 is the partial pressure of gas 1 N1 is the number of moles of gas 1 and Nt and Pt is the total number of moles and total pressure of gas
      (2 votes)
  • hopper cool style avatar for user Khan academy
    At the Partial pressure of Nitrogen should change as the volume it can occupy is reduced due to the introduction of oxygen which takes up half of the space, right?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user MBCory
      Actually, Kinetic Molecular Theory (KMT) tells us that since gas molecules take up almost no space in comparison to any container we could put them in, we can think of them as having no volume. If the (oxygen) molecules have no volume, then they can't take away any of the volume that the N2 is occupying, which itself is much less than "half" the volume of the box. As the teacher says at about , gases act independently of each other.
      Hope this helps!
      (2 votes)

Video transcript

- [Instructor] In this video, we're going to introduce ourselves to the idea of partial pressure due to ideal gases. And the way to think about it is imagine some type of a container, and you don't just have one type of gas in that container. You have more than one type of gas. So let's say you have gas one that is in this white color. And obviously, I'm not drawing it to scale, and I'm just drawing those gas molecules moving around. You have gas two in this yellow color. You have gas three in this blue color. It turns out that people have been able to observe that the total pressure in this system and you could imagine that's being exerted on the inside of the wall, or if you put anything in this container, the pressure, the force per area that would be exerted on that thing is equal to the sum of the pressures contributed from each of these gases or the pressure that each gas would exert on its own. So this is going to be equal to the partial pressure due to gas one plus the partial pressure due to gas two plus the partial pressure due to gas three. And this makes sense mathematically from the ideal gas law that we have seen before. Remember, the ideal gas law tells us that pressure times volume is equal to the number of moles times the ideal gas constant times the temperature. And so if you were to solve for pressure here, just divide both sides by volume. You'd get pressure is equal to nR times T over volume. And so we can express both sides of this equation that way. Our total pressure, that would be our total number of moles. So let me write it this way, n total times the ideal gas constant times our temperature in kelvin divided by the volume of our container. And that's going to be equal to, so the pressure due to gas one, that's going to be the number of moles of gas one, times the ideal gas constant times the temperature, the temperature is not going to be different for each gas, we're assuming they're all in the same environment, divided by the volume. And once again, the volume is going to be the same. They're all in the same container in this situation. And then we would add that to the number of moles of gas two times the ideal gas constant, which once again is going to be the same for all of the gases, times the temperature divided by the volume. And then to that, we could add the number of moles of gas three times the ideal gas constant times the temperature divided by the volume. Now, I just happen to have three gases here, but you could clearly keep going and keep adding more gases into this container. But when you look at it mathematically like this, you can see that the right-hand side, we can factor out the RT over V. And if you do that, you are going to get n one plus n two plus n three, let me close those parentheses, times RT, RT over V. And this right over here is the exact same thing as our total number of moles. If you say the number of moles of gas one plus the number of moles of gas two plus the number of moles of gas three, that's going to give you the total number of moles of gas that you have in the container. So this makes sense mathematically and logically. And we can use these mathematical ideas to answer other questions or to come up with other ways of thinking about it. For example, let's say that we knew that the total pressure in our container due to all of the gases is four atmospheres. And let's say we know that the total number of moles in the container is equal to eight moles. And let's say we know that the number of moles of gas three is equal to two moles. Can we use this information to figure out what is going to be the partial pressure due to gas three? Pause this video, and try to think about that. Well, one way you could think about it is the partial pressure due to gas three over the total pressure, over the total pressure is going to be equal to, if we just look at this piece right over here, it's going to be this. It's going to be the number of moles of gas three times the ideal gas constant times the temperature divided by the volume. And then the total pressure, well, that's just going to be this expression. So the total number of moles times the ideal gas constant times that same temperature, 'cause they're all in the same environment, divided by that same volume. They're in the same container. And you can see very clearly that the RT over V is in the numerator and the denominator, so they're going to cancel out. And we get this idea that the, I'll write it down here, the partial pressure due to gas three over the total pressure is equal to the number of moles of gas three divided by the total, total number of moles. And this quantity right over here, this is known as the mole fraction. Let me just write that down. It's a useful concept. And you can see the mole fraction can help you figure out what the partial pressure is going to be. So for this example, if we just substitute the numbers, we know that the total pressure is four. We know that the total number of moles is eight. We know that the moles, the number of moles of gas three is two. And then we can just solve. We get, let me just do it, write it over here, I'll write it in one color, that the partial pressure due to gas three over four is equal to two over eight, is equal to 1/4. And so you can just pattern match this, or you can multiply both sides by four to figure out that the partial pressure due to gas three is going to be one. And since we were dealing with units of atmosphere for the total pressure, this is going to be one atmosphere. And we'd be done.