Main content
Biology library
Course: Biology library > Unit 33
Lesson 5: Immunology- Role of phagocytes in innate or nonspecific immunity
- Types of immune responses: Innate and adaptive, humoral vs. cell-mediated
- B lymphocytes (B cells)
- Professional antigen presenting cells (APC) and MHC II complexes
- Helper T cells
- Cytotoxic T cells and MHC I complexes
- Review of B cells, CD4+ T cells and CD8+ T cells
- Inflammatory response
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Review of B cells, CD4+ T cells and CD8+ T cells
Review of B cells, CD4+ T cells and CD8+ T cells. Created by Sal Khan.
Want to join the conversation?
- What about natural Killing cells (NK)?(30 votes)
- NK cells are a part of the innate immune system, unlike B and T cells which are a part of the adaptive immune system. This means that NK cells don't have specific receptors like B and T cells, rather they respond to cells which appear 'damaged' in some way.
In fact, NK cells are naturally agressive, and will kill any cell which doesn't have signals to tell them not to. These signals include the MHC molecules themselves. This is very useful to protect against viruses, as some viruses stop their host cell producing MHCI in an attempt to block detection by T-killer cells. This lack of MHCI is detected by the NK cell, which kills the infected cell.(74 votes)
- what is the difference between an antigen and a pathogen?(12 votes)
- An Antigen is a substance that can trigger a defense mechanism in the body, it doesn't have to be a foreign substance (our blood type is determined by which antigen our Red Blood Cells produce A, B, AB, O) there are probably other examples as well.
A Pathogen is a disease causing virus, bacteria, protein, spore ect... of which have antigens on them that (hopefully) trigger an immune response on our part.(37 votes)
- What does CD mean?(18 votes)
- CD (cluster of differentiation) antigens are cell-surface molecules expressed on leukocytes and other cells relevant for the immune system
https://www.immunopaedia.org.za/immunology/basics/cd-nomenclature/#:~:text=CD%20Molecules,relevant%20for%20the%20immune%20system.&text=It%20provides%20a%20unified%20designation,cell%2Dsurface%20molecules%20they%20recognize.(1 vote)
- why is the dentritic cell the best proffesional antigen presenting cell?(13 votes)
- If you look at the structure of a dendritic cell, it has long outgrowths. These present a larger surface area for presenting of antigens and by that same logic, they also present larger surface area for exposure of MHC II.
Hope this helps :)(19 votes)
- Sal went on explaining that B cell, Th cell and Tc Cell when are triggered by the immunogens, they all differentiate into memory and effector cells. From my knowledge, they are the only T cells that actually differentiate to memory cells.
Besides from my knowledge, there are four types of T cells. 1. Cytotoxic T cell 2. Helper T cell 3. Suppressor T cell 4. Memory T cell
(9 votes)- The Memory Cells consist of both B and T cells.
And as for the types of T-cells there are (1) Cytotoxic CD8 T-cells (that bind to MHC Class I), (2) CD4 T-cells ('helper' and 'regulatory') (that bind to MHC Class II) and the T-regulating cells, and finally (3) Memory T-cells (that are CD4+ or CD8+ that come from the effector cells)(9 votes)
- what makes a t or b cells decide to be a memory cell or effector cell when it is activated?(14 votes)
- When an effector B cell (plasma cell) becomes activated it produces memory and effector B cells. A memory B cell lasts for a long time so if in the future the pathogen comes back it can proliferate effector and memory cells. A effector B cell on the other hand proliferates antigens immediately to fight off the current infections. It is the same for T cells except the cytotoxic T cell does not proliferate antigens it releases histamines.(0 votes)
- Are plasma cells the same plasma you can donate at blood banks?(1 vote)
- Plasma you donate is the fluid part of your blood with no cells in it. Plasma cells are a type of white blood cell. These are not present in the plasma you donate.(16 votes)
- After a B cell or T cell is activated, does it exponentially divide into 2, 2 into 4,etc. , or does it proliferate linearly (only this cell is allowed to divide)?(5 votes)
- Short answer:
They proliferate - like any other cell - exponetially as long as there is an "ongoing" signal* to do so.
(*by T-Cells, Cytokines and Antigens - not like any other cell)
Long answer:
http://www.ncbi.nlm.nih.gov/pubmed/11298340(5 votes)
- Why does our body temperature increase when we have fever?(4 votes)
- It is mainly because of pyrogens going into the bloodstream. These control the body's temperature and heat.(5 votes)
- Is it possible for a cell to have both CD4 and CD8 proteins on their T-cells?(3 votes)
- Normally, T cells are either CD4 positive or CD8 positive, not both.
During maturation the T cells which get interacted with MHC-II molecules, become CD4 cells, and those with MHC-I molecule, become CD8.
CD4 positive cells are also called HElper T cells, which have further classification like TH-1, TH-2. TH-17.
CD8 cells are cytotoxic T cells, mainly activated by the cytokines released from CD4 cells(3 votes)
Video transcript
Now that we've touched on all
of the major players in the specific immune system, what I
thought I would do in this video is do a summary
so it all fits together a little bit. So the first person or character
we got exposed to was the B cell, which
I always do in blue. And what made that interesting
is that every B cell has its own specific-- or they have
membrane bound antibodies, but for each B cell, the membrane
bound antibodies on each specific B cell had its
own variable portion. So this B cell-- it'll be
variable right like that. And if I were to draw another
B cell right here, I would draw the variable portion
a little bit different. This is why different actual
B cells will respond to different antigens or different
pathogens that have entered our system. And a B cell gets activated--
let's talk about what happens when it gets activated or
what needs to happen. It needs binding of the pathogen
onto one of these membrane bound antibodies. But that's not all. I mean, sometimes that's all you
need, but usually you also need to be stimulated
by a T cell. And you might say, where's
the helper T cell stimulate this guy? Well, B cells were also antigen
presenting cells so he'll suck this guy in, break
him out, and present him on an MHC II complex. Let's say this is an
MHC II complex. This guy gets cut up, part of
him gets presented right here, and then an activated helper T
cell whose variable portion of their T cell receptor is
specific to this could come along and activate
this character. I'm not drawing that receptor
well, but that right there is a helper T cell and that
is the B cell. Now, once it's activated, it
starts differentiating-- and it starts cloning itself and
it can either turn into effector cells-- and this true
of B cells or T cells. Once they get activated, they
keep cloning or they either turn into effector cells
or memory cells. Memory cells stick around a
lot longer so that in the future you're going to have
many more of this version of B cells. So if you get the same antigen
or pathogen in the future, the likelihood of it bumping into
this type of B cell is going to be higher so the response
will occur faster. The effector B cells produce--
they essentially turn into antibody making machines. So they'll say, gee, this
antibody bonds to this antigen that we have in the
system now. Let me just produce
a ton of them. So it starts building up all of
the cellular machinery and it starts producing antibodies
like crazy. I want to point out one thing
that my wife pointed out to me when I was-- she overheard me
making the last video and she's a fellow in hematology
and a lot of hematology is immunology. So I definitely have
to defer to her. She is the expert on this. In the last video, I kind of
very hand-wavingly said, B cells, once they get activated,
if they're the effector B cells, they
produce antibodies. I want to be very clear. It is only the effector B
cells that produce the antibodies and the common term
for them-- if someone were to walk up to you and say, what
cells in the body are producing antibodies? You wouldn't be wrong if you
said effector B cells, but the common term that people expect
to hear are plasma cells. Plasma cells and effector B
cells are the same thing, but normally when they say, what
happens to a B cell when it starts producing antibodies? They then call it
a plasma cell. They don't call it a B cell
anymore and I want to make that very clear because my
wife's like, well, I have attendings that if they asked
me, what cell in the body produces antibodies? And if you said, B cell, they
would say, no, wrong. It's a plasma cell-- or if you
said effector B cell, they wouldn't be happy. They wanted to hear
plasma cell. This is the common term used in
immunology and apparently rheumatology circles. Did I just say my wife
is a hematologist? No, no. She's studying rheumatology. I get confused with all the
tologies sometimes. Anyway, that's what
the B cells do. And these antibodies can then
go attach things and mess up viruses and antigen-- well,
viruses or instances of antigens and bacteria-- and
tag them for pick up by macrophages or other types
of phagocytes. Those were the B cells. Then you have your T cells. And here I'm going to talk about
T cells a little bit differently than I had in
the last few videos. Just to give a little bit more
of a nuance-- so there's two types of T cells. You'll say, hey, they are helper
T cells and cytotoxic T cells-- and you're not wrong,
but what I'm going to do is do a slightly different
differentiation just so that you are familiar with these
terms. So there's two types of T cells. All T cells have T
cell receptors. But they also have these other
proteins on them and some of them have these proteins
called-- CD4 proteins and some of them have what's
called CD8. So this one right here
would be called a CD8 positive T cell. It has the CD8 proteins on it. And this would be called
a CD4 positive T cell. I've never used these
words before. You're like, gee, where
are these coming from? Now, the CD4 receptor is the
thing that wants to bind-- this is the thing that helps to
go to the MHC II complexes. So most CD4 T cells are
helper T cells. Most of the time-- and I want
to make it very clear-- immunology is a very-- I mean,
this field, people are discovering things on
a regular basis. So people are still
understanding these things and there's all sorts of special
cases, but usually when people talk about CD4 positive T cells,
they're talking about helper T cells. So this is normally going to
be a helper T cell-- or you could call it T helper,
just like that. Likewise, the CD8 proteins,
these are attracted to the MHC I complex. This is what brings them to
the cells that have the cancer, that have expressed
antigens on their MHC I complex. So most of the time CD8 positive T cells are cytotoxic. And oftentimes, before a cell
gets activated, they just describe it as a CD4 T cell
or a CD8 cell and after it becomes activated and starts
wanting to kill things, then maybe you call it cytotoxic. But this is all wordplay. I think you get the
general idea. But just to remember what they
do, this guy-- we just said he wants to bond to the MHC
complex, so you have MHC complex plus presenting
some antigen. This is MHC I right here. We learned in the last video,
every nucleated cell in the body expresses an
MHC I complex. So this is the case where
something wacky is happening inside this cell. Maybe a virus has infected it. Maybe it's cancerous. It needs to die, otherwise it's
going to keep producing viruses if it's infected by a
virus, or otherwise it's going to keep dividing if it's
a cancer and infect the rest of the body. So the CD8 kills
infected cells. I'll just say bad cells because
I don't if you can-- cancer really isn't
an infection. Kills bad cells-- cells that
are-- if you don't kill them, they're going to keep producing
viruses or keep splitting and spreading the
cancer, while T cells-- they're attracted to
professional antigen presenting cells. And I always do a dendritic cell
right here because those are the best antigen
presenting cells. And they have MHC II complexes
and it's digested some antigen and it presents it right there
and then that activates the helper T cell. And then when the helper T
cell-- all of these guys, once they're activated, they all go
into effector-- they all start differentiating into effector
and memory cells. An effector helper T cell
does a couple of things. So if we're talking about a
helper T cell, it can activate B cells and it also releases
cytokines. Let's say this guy
gets activated. He'll also start releasing these
chemicals, which are really those alarm bells that
tell other people to really get in gear-- maybe B cells and
cytotoxic T cells start proliferating more rigorously. Actually, part of the cytotoxic
T cell activation can be assisted or kind of
given a boost by these cytokines-- of so by
these alarm bells. So this guy's the alarm ringer,
while the CD8 cells or the cytotoxic T cells--
in their effector mode, they kill cells. And of course in the memory
mode, there's just a bunch of copies of these originals around
that are ready and more than they were originally were,
so that in the future if something like this or something
like this occurs, they're going to be activated
faster because they're going to be bumped into faster. So hopefully that clears up a
little bit and I introduced a little bit more tough
terminology, but I really want to stress my wife's point
because she said, hey, you don't want people out there
saying B cells produce antibodies even though it is
effector B cells-- activated B cells that have differentiated
into effector B cells. Those are what are producing
antibodies-- because when they go to medical school, people
are going to want to hear plasma cell.