Main content
Biology library
Course: Biology library > Unit 7
Lesson 2: Laws of thermodynamics- Introduction to energy
- Types of energy
- First Law of Thermodynamics introduction
- Introduction to entropy
- Second Law of Thermodynamics
- Second Law of Thermodynamics and entropy
- Why heat increases entropy
- The laws of thermodynamics
- Energy and thermodynamics
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Why heat increases entropy
Why heat increases entropy—even though some of it can do work!
Want to join the conversation?
- How could atoms squish each other if their structures aren't a full sphere? Atoms are just an electron buzzing around a nucleus, how can atoms squish with this type of structure?(12 votes)
- Atoms really can't squish against each other because the negative electrons will repel each other. Where in the video did Sal say that atoms squish? I recommend watching the Vsause video, "You can't touch anything."(7 votes)
- Why is heat useless in terms of cellular reactions? I didn't see you mention this. :)(0 votes)
- Heat is not useless in cellular reactions - homeothermy evolved thanks to the very large impact temperature has on all biological functions.(13 votes)
- Could we create a mental "universe" where the entropy would be actually decreasing?(3 votes)
- Unless you found away to make the universe decrease in size and make everything colder then you could make a universe where entropy is decreasing.(5 votes)
- So, if more and more of the energy in the universe is becoming "useless" and energy can't be created nor destroyed, does that mean that at some point we'll run out of "useful" energy? (sorry if that's a stupid question)(3 votes)
- Yes, that is what is called the heat death of the universe.(4 votes)
- How do scientists use their understanding of entropy in their research? What is practical about the concept of entropy? Thanks!(3 votes)
- Entropy is one of the driving forces in nature, as all things that go into motion will not return to a perfect state again (barring intelligent energy), and contribute to disorder. Heat makes molecules more energetic and move a lot, so a lot of chaos happens in terms of that.(3 votes)
- Does heat give particles more energy? If a place is very cold like Antarctica, will entropy still increase?(4 votes)
- Yes, it will. Any other temperature besides absolute zero, (which is really not achievable on earth), entropy always increases. Even if it is really cold, entropy is always increasing. If it's cold, the entropy won't increase as much as a hotter substance. But that's it.(2 votes)
- How do you measure the amount of entropy?(3 votes)
- We can probably say that almost any energy conversion releases some amount of heat, and little of the heat can be converted to another form of energy. That means that amount of heat in the universe constantly increases. In that case, the amount of heat on Earth must also increase constantly. Does that mean that the Earth's temperature increases all the time?(2 votes)
- No, because that heat can be dispersed out into space.(3 votes)
- At the beginning of the video, Sal says that an increase in entropy can be viewed as a reduction in the availability of energy, which means that you can make less change/do less things with the energy. Later, he says that heat increases entropy. However, if heat can be used to do work, doesn't it mean that it increases the availability of energy, thereby reducing entropy?(2 votes)
- To do work you are moving lower entropy energy to higher entropy coming closer to equilibrium.
When you increase the heat in a system you are increasing the available energy in that system but you are putting this energy into the system from the outside.
If you include the heat source into the system you are looking at you are bringing the system closer into equilibrium which decreases the overall available energy for work. Once the system is in equilibrium there can be no internal work done.
A system that is in equilibrium at 10,000 K has more energy than a system that is in equilibrium at 1,000 K but it has no more ability to do work.
If you have 4 systems in equilibrium where:
System A is at 10,000 K
System B is at 9,000 K
System C is at 1,100 K
System D is at 1,000 K
The energy and entropy in A > B > C > D and there is no available energy to do work within any of the systems. If you use System C with System D you have a certain amount of available energy because of the temperature difference of 100 K but if you compare this putting System A and B together there is a much greater temperature difference of 1,000 K so there is a much greater amount of energy that can be used for work between them even though there is much more entropy in both A & B than there is in C & D.(2 votes)
- Why does heat increases entropy not on a molecular scale?(2 votes)
- It increases the entropy by causing molecules to collide with each other. When these movements occur, the entropy increases.(2 votes)
Video transcript
- [Voiceover] In the
video on the second law of thermodynamics I talk
about how the entropy of the universe is constantly increasing, that it's not going to decrease. And another way of thinking
about it is that the energy in the universe, more and more of
it is going towards entropy, it's becoming less and less useful. And the argument that I
use, even in our every day, I talk about hey, while I'm
making this video, my body's generating heat, and that
heat is leading to entropy, it's leading to more
entropy in the universe. And a reasonable question is,
how does heat lead to entropy? Remember heat is a
transfer of thermal energy, and entropy, this is
a state of the system, it's the number of, it's the amount of disorder
we have, it's the number of states that a system
could actually take on. So let's have an example here,
let's assume that this is an ideal, closed system, this
little white square here. And these molecules are bouncing
around at some temperature, so they have some average
kinetic energy, each molecule will be doing different things,
and I always draw it as this translational kinetic energy,
but they could be rotating and oscillating, and doing
all sorts of other things. So they could be doing
other things as well, but the translational kinetic
energy is a little bit easier to actually visualize. But now let's transfer
some heat into the system. So we have a transfer of thermal
energy, which we call heat, let me pick a color for
that, I will use orange, and we use the letter Q to denote heat. So we have a heat
transfer coming into this, and then because of this, the
temperature of this system goes up, the average
kinetic energy goes up, these things start bouncing
around with more momentum, with more velocity. So why does this system have entropy? You might say, well
look, you know there's, they have the same number of molecules, I have the same amount of volume, I'm looking at a
two-dimensional, looks like area, but we could imagine the
same amount of volume that it's filling up, it
feels like there's the same number of places that the
actual molecules could be. But our state is not
dictated purely by position, not purely by where the
different things are. The state is everything
about the system that you could use to predict
what's going to happen next to the system, so
the state also includes the various velocities of these particles. So when you have a higher temperature, you have a larger number
of potential velocities that you might be able
to actually take on. And also when you have
this higher kinetic energy, remember all of these molecules,
at the end of the day, they're made up of atoms that have nuclei and they have electrons
buzzing around them. And as they, if they don't
have much kinetic energy, they might not be able to get too close. So let's say this is the
outer electrons of one, I'll just say atom, and
let's say that this is another one right over here. If they're going with only
a reasonable kinetic energy, if they go with a
reasonable kinetic energy, they might be able to get, maybe they're going to be able to get that close. But if they were running, if
they were hitting each other much faster, they might be able
to get a little bit closer, they might kind of smush into each other, if you imagine kind of two
balls hitting each other much faster, they're going
to push on each other a little bit harder, and
so there's actually more possible states you can take on when you have higher kinetic energy. So this is, these things came in really, really fast and smushed into each other, while these were nice and polite, and came it at a nice gentle velocity. So you could actually even
have more positional states, more different configurations
in three-dimensional space. So that's why heat is
actually leading to entropy. Now I know what some
of you might be saying, well heat doesn't only
cause disorder, in fact, heat can be used to do work. In fact, that's the whole basis, in fact, a lot of the basis of the
Industrial Revolution, steam engines, combustion engines, the combustion engine in
your car that uses heat, uses a combustion reaction to expand, to push up a piston, which
is used to do actual work. And that is, of course, true. And over here we have an
example of that happening. So I have some molecules
in here buzzing around with some temperature, and
then I'm going to apply, I'm going to add some heat to the system. So let's add some heat to the system. And in this system, I don't
have just a closed boundary, these things start buzzing around more, they can take on more states
and all of that type of thing, but they can also use
to expand the container. So what we see happening here
is they push this piston, they push this piston open,
you actually have work, let me do work in a different color. You actually have work being done. I'll do it smaller. You actually have some work being done, and how is that work being done? Well as these things bounce around, we're talking about a lot of molecules, every now and then one of these molecules is going to bump there
and then bounce off, but that's going to provide
some force for a very small amount of time, that's going
to push it up a little bit and but you have so
many of these molecules, I've only drawn a handful
of them, but in any real thermodynamic system,
you're going to be talking about many millions and
millions and millions, you're talking about things on the, multiples of Avogadro's
number, number of molecules. And so at any given moment,
a lot of them are going to be bouncing right off this
thing, and they're going to be doing work, they're going to be pushing, they're going to be displacing
this piston in the direction of the force, or part, a
component of their force is going to be pushing this piston
actually up, and doing work. But no heat-based, I guess you could say, system or engine can be 100% efficient. So some of this can be used to do work, but a lot of it is going to
be used to add to the disorder of the system, to increase
the number of states that the system could take on. One way to think about it,
and this has always helped me, is heat is transfer of thermal energy, that happens at the
boundary of the system, this heat could be you
know, maybe there's a, maybe there's a flame down here, and at the boundaries this
thing might be able to, if this wasn't a fully-closed
system, it could release heat at the boundaries of the system. But within the system, the
heat is just leading the increased thermal energy is
just leading to more entropy. Now work also happens at
the boundary of the system, so up here, there's probably
some heat being released, but it's also able to do work. So heat and work, these
are happening at the boundaries of the system,
but a lot of that energy goes into the inside of the
system, and that is just, things are just gonna, you
know, it's like a big mosh pit, these things are going to run
into each other much faster, and way more states
that they could take on. And so that's why, when
I talk about you know, if I move around and I'm
walking on the floor, just the friction of the carpet
is going to generate heat. That's going to contribute
to entropy in the universe. Just me existing, the
cellular processes in my body that generate heat, it
increases the entropy of the universe that makes the
total energy of the universe less useful, that's why it's happening.