Main content
Biology library
Course: Biology library > Unit 17
Lesson 2: Discovery of DNAHershey and Chase: DNA is the genetic material
How Alfred Hershey and Martha Chase showed conclusively that DNA is the genetic material.
Want to join the conversation?
- This experiment proved that DNA goes into the cell. But why does that mean that DNA holds genetic material?(11 votes)
- Well, good question. From my point of view: they saw that this something goes inside the bacterial cell and many viruses were made from this process, which means that something CODED for different proteins which are the parts of the new virus molecules (the cap,..), if not, then where did all these viruses come from? so the question they had in mind is what is this thing that holds the genetic material that caused all of this, which is the something that logically went into the bacterial cell, and they found out that it's the DNA.(10 votes)
- in both experiments, what separates into the supernatant and the pellet. Explain?(6 votes)
- Denser substances become the pellet and less dense substances are in the supernatant. The DNA of the virus was tagged with radioactive phosphorus in one experiment, and this ended up in the pellet. The protein shell of the virus was tagged with radioactive sulphur, and this ended up in the supernatant. The heavier bacterial cells formed the pellet, so Hershey and Chase knew that DNA was the genetic material of the virus, as the phosphorus was found there.(6 votes)
- How did they know that the pellet will contain the bacterial portion?(5 votes)
- The bacteria is heavier than all the other components put into the test tube. Therefore when the test tube was put into a centrifuge the centrifugal forces pulled the heavier material, the bacteria, to the bottom, leaving the other parts of the phage on top. That is why the pellet which was on the bottom of the test tube only contained bacteria.(6 votes)
- why not our characters are seen the person whom we have donated our blood ? As we know that blood contains genetic material in it .(4 votes)
- The amount of blood from the person taking in the blood strongly out-weighs the donator. Also, the genetic material is already done being encoded at birth, although many "programs" are waiting to occur.(4 votes)
- Why was only Bacteriophage selected by Hershey and Chase for the experiment?(4 votes)
- Because they already had bacteria as experimental organisms and bacteriophage is the only known type of virus to infect bacteria.
Also, it was way easier and appropriate to test on microorganisms, then to test on Drosophila or mice.(4 votes)
- How is it that the cells are not damaged during blending?(3 votes)
- Blending exists to act as homogenising the tissue - destroying cell membranes and creating one mass with several components. Centrifuging is used to separate fractions.(4 votes)
- Does this mean in every one of our cells that contains dna, that there are little helices of dna physically located inside?(3 votes)
- Yes, essentially all§ your cells contain DNA.
In fact most of those cells contain about 2 m of DNA!
https://www.sciencefocus.com/the-human-body/how-long-is-your-dna/
§Note: One exception are the red blood cells, which lack both nuclei and mitochondria.(4 votes)
- Are there different speices of viruses?(3 votes)
- Yes, and since they are not classified as living things, it is even harder to put them into taxonomic entities.
There are many many viruses therefore many classification systems developed:
Viruses are mainly classified by phenotypic characteristics, such as:
morphology,
nucleic acid type,
mode of replication,
host organisms,
and the type of disease they cause!(2 votes)
- what is Sulphur 35? and whats the numbers for?(2 votes)
- Sulphur 35 is a radioactive isotope of sulphur. Most naturally occurring sulphur is 32S, which means that it has 16 protons and 16 neutrons. 35S has 16 protons and 19 neutrons. The radioactivity gave the scientists a way to identify where sulphur ended up, either on the surface of or inside the bacteria.(4 votes)
- Why are viruses made of protein and DNA?(2 votes)
- The protein is a protective shell and the DNA is the part that gives instructions on how to make more viruses.(3 votes)
Video transcript
- [Voiceover] In the last video we began to see some pretty good evidence that DNA was the molecular
basis for inheritance and we saw that from the work of Avery, McCarthy and McLead where
they tried to identify whether it was DNA or proteins that acted as a transformation principle
in Griffith's experiments and I encourage you to watch that video if all of this sounds unfamiliar. But even their work in 1944 was not viewed as conclusive evidence. It was viewed as strong evidence, but not conclusive evidence because, remember how they did it, they took the heat killed smooth strain, the smooth strain you might remember from Griffith's experiment
was the virulent one. The heat killed it. When you heat kill it in injected amounts, it didn't do anything to the mouse, but if you took the heat
killed smooth strain and put it with the rough strain, it somehow transformed the rough strain in to the smooth strain, in to the virulent strain and so they took the heat killed smooth strain and they took out its different components and they eventually were able to isolate one that was able to
transform the rough strain in to the smooth strain by itself and then they applied all
sorts of chemical tests to it and said, "Hey, there's
pretty good evidence "that this is DNA," but it wasn't conclusive because, well, maybe they didn't purify it properly or maybe there was still
a little bit of protein. Maybe it was mostly DNA, but maybe it was a little bit of protein
that was still left there that actually did the transformation. So the scientific community, they weren't just saying,
"Hey, that looks pretty good, "Let's move on, let's just assume." They wanted to continue to test it and especially test it in different ways. And, the conclusive evidence didn't come until a few years later, until 1952 when Alfred Hershey and Martha Chase decided to study T2 bacterio phage. Let me write this down. T2 bacterio phage, this is phage that infects bacteria. Bacterio phage. When you hear the word phage, we're referring to viruses. Now they knew that T2 bacterio phage was composed of proteins and DNA and they didn't, well, we now know, that it's a protein shell
and there's DNA inside, but they, from their
point of view, they said, "Okay, it's made up and if we try to "look at the stuff that
this virus is made of, "it's protein and DNA." So protein plus DNA, and they knew that this virus, when it infects bacteria, it injects something into that bacteria. So it injects something and that something is what hijacks that bacteria's
genetic information to start producing more
of the T2 bacterio phage. So they could identify the
something that gets injected. If they could figure out
if that something was either a protein or a virus, then they would have conclusively proven so sorry, if they could show that something
was not protein or virus, if it was protein or DNA, if they could show that it
was either protein or DNA, then they could show conclusively that it's either the protein or the DNA that forms the molecular basis and so they're actually quite sceptical of Avery, McCarthy and
MacLead's experiments. They actually, Hershey and Chase, actually thought that they were gonna show that it was the protein, and remember, this whole
time people were like, "Protein, we know it's
these complex molecules "that have these different shapes "and all these different amino acids. "It seems like that's
much more likely to encode "the complexity of genetic
information than DNA." They didn't have an
appreciation for the structure of DNA at this time. So they devised an
experiment to figure out what is that something that the T2 bacterio phage is infecting. Is that something protein? Is it protein or DNA? So this is the question. So what they do is they take two batches or
they developed two batches of T2 bacterio phage. One batch of the T2 bacterio phage they do it in the presence
of radioactive phosphorus, phosphorus 32. In the other batch, I should say they grow that T2 bacterio phage in the process of another
radioactive isotope, but this time it is of sulfur. This is sulfur 35. So why are they doing that? Well phosphorus is found in DNA. So in this first batch, the radioactive marker, you could say, is going to incorporate
itself into the DNA. In the second batch, sulfur is found in the protein and not in the DNA and so this would actually
tag the protein parts. And if you're wondering, well, how do you develop these
radioactive batches, well, you let the viruses hijack cells in a medium that has either
the radioactive sulfur or the radioactive phosphorus
and as they reproduce, they are going to incorporate
that radioactive material into either the protein or
the DNA of the new viruses that get produced. So anyway, they were able to produce some of the T2 bacterio phage in the presence of the radioactive phosphorus and they knew that way that the DNA would get that radioactive material in it and then with the radioactive sulfur they said the protein would
have that radioactive sulfur. And then for each of those batches, they then infected
bacterio phage with them and they said, okay, they're
going to inject something in to the bacterio phage,
and to figure out what that something is that was
injected in to the bacterio phage they take the products in
either of the two scenarios, they first blend 'em up so that all of the stuff that's left outside gets taken off of the
surface of the bacteria cells and then they stick it in to a centrifuge and the centrifuge is, you can imagine, it's kind of just a big spinning machine. If you were to take a test
tube and take it sideways, one way to think about it,
put it sideways like this. Put maybe a stopper in it so nothing leaks and then you spin it
around really, really, really, really fast, what you're going to find, you can actually generate
significant g forces and so the heavier stuff
is going to gravitate to the bottom of the
test tube or to the right when it is on its side, and the lighter stuff
is going to gravitate to the left. And, it turns out that the bacteria, the actual bacterial cells, those are heavier so the bacterial cells are going to go towards
the bottom of the test tube and they're gonna form a material that we call the pellet and then all of the other stuff, all of the fluid and
the leftover phage parts those are going to go up to the top of the test tube and we
call that the supernatent. I always have trouble pronouncing that. Supernatent. And so they said, "Look,
if we look at the pellet," which they knew had the
bacterial cells int here or you could even say the
remnants of the bacterial cells, "if the pellet here "contains phosphorus,
that means that the DNA, "our radioactive DNA or our tagged DNA "made it in to the bacteria, "but if it contains sulfur,
that means that the protein "made it in to the bacteria." And, what they found is they found that the radioactive phosphorus was in the pellet which
allowed them to conclude that, hey, it's the DNA from the virus that made it inside of the bacteria and not the protein and then they said, "Well, it must be! "Wow, the Avery, McCarthy
and Maclead were correct. "It's actually the DNA that is
this transformation principle "that can go in and hijack the genetic, "the machinery of the bacteria "to produce more of the actual virus, "so this is a really,
really, really big deal." Once again, we started with Mendel saying, "Hey, we have
these inheritable factors "and they seem to segregate
and sort in certain ways. "They seem to be discrete." Bover and Sutton said, "Hey, "chromosomes seem to kind of, "their behavior during meiosis "when cells split "seem to kind of match up to that." Morgan starts to provide some evidence. We have Griffith's
experiments with the mice and the bacteria and saying, "Hey, look, "there's some transformation principle." Avery, McCarthy and MacLeod say, "Hey, "looks like when we try to really purify "this transformation principle, "it seems like DNA is
what really matters." And then Hershey and Chase validate that even more conclusively.