If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Evolution: It's a Thing

Hank gets real with us in a discussion of evolution - it's a thing, not a debate. Gene distribution changes over time, across successive generations, to give rise to diversity at every level of biological organization. Created by EcoGeek.

Want to join the conversation?

  • piceratops ultimate style avatar for user Dayvyd
    When he is talking about us being x% similar to various other animals - how is this number determined?
    (21 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user michelle
      this number is determined by the percentage of DNA an animal has in common with another animal. For example when he speaks of Chimpanzees being 98.6% similar to humans, it's meant that 98.6% of a chimpanzees DNA is exactly the same DNA humans have.
      (28 votes)
  • blobby green style avatar for user alecwillerman
    Why are you so sure we all are descendants from a single micro-organism. Why couldn't multiple "original" micro-organisms have formed and earths biodiversity be descended from this group of "original" micro-organisms. Who's to say entire orders now extinct couldn't have evolved from a plethora of these initial micro-organisms. What am I missing?
    (20 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Just Keith
      While we do not know a great deal about what the last universal common ancestor (often called LUCA) must have been like, we can be fairly sure there was one and only one.

      Please understand that referencing this organism doesn't mean a single individual, but rather a community of related organisms.

      Whether there were multiple such species but only one lineage survived, I don't think we can say. But as far as everything that is alive today, and the various extinct ancestral species, we can be pretty confident in saying that they all have a single LUCA. There are many reasons for concluding this, including:

      All living things use the same 20 amino acids, even though there are many more to choose from. It seems rather unlikely that independently evolving lifeforms would have selected exactly the same 20 amino acids (or for that matter, would have specifically had 20 and not 18 or 22 or some other number of amino acids).

      Although there are some organisms with minor variations, all known organisms share the same basic genetic code. It is rather unlikely that independently evolving organisms would have happened to evolve exactly the same genetic code.

      We could go on with many other features shared by all life that are rather unlikely to have evolved separately. So, it would seem that there must have been a LUCA about 3.5 billion years ago.

      It should be pointed out that the LUCA could not have been the original life form. It clearly was not. The first forms of life would have been much more primitive.
      (23 votes)
  • piceratops sapling style avatar for user Sean Zheng
    I thought that humans have about 50% of deoxyribonucleic acid as a banana, but is it also true with fruit flies, as mentioned at ?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • orange juice squid orange style avatar for user Liam
    Why do some species evolve faster then others?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user George, Akash
    Would a virus be considered a living being?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • duskpin tree style avatar for user Coulter Gill
    when was evolution first discovered?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user AtharvaKeni4729
    So does that mean in time we will evolve with some new feature too ? If yes then what it may be ?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • aqualine sapling style avatar for user lambsandponies
    Were humans alive during the time of the dinosaurs? Or are we related to dinosaurs?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user haripriyasikhashajikumar
    what is meant by adaptive radiation
    (1 vote)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user vallyofkings
    in the March of Progress picture it depicts our evolution from monkeys to humans. i know we share a common ancestor but does it necessarily mean that we evolved from monkeys. I've read multiple explanations and theories and a majority were convincing, such as skull shrinkage being evident. i would like to hear your thoughts.
    (1 vote)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Andrew M
      No, we did not evolve from the monkeys that exist today.
      We and the other apes, and the monkeys (and all life on earth) share common ancestors.
      Our most recent common ancestor with the apes is more recent than our most recent common ancestor with the monkeys, which is why we are more closely related to the apes - we diverged from them more recently.
      (1 vote)

Video transcript

- Congratulations, this is our last episode of our section on evolution and genetics, which puts us at the halfway mark of Crash Course biology. So far, we've learned about DNA, genetics, natural selection, how cells multiply, population, speciation, replication, respiration, and photosynthesistation. I'm so proud of you, but I couldn't let this section end without discussing the discussion that everybody can't help but discuss these days, evolution. It's a thing, it's not a debate. Evolution is what makes life possible. It allows organisms to adapt to the environment as it changes. It's responsible for the enormous diversity and complexity of life on Earth, which not only provides organisms with sources of food and some healthy competition, it also gives us some truly awesome stuff to marvel at. And even though evolution makes living things different from one another, it also shows us how we're all the same. All of life, every single thing that's alive on the Earth today can claim the same shared heritage, having descended from the very first microorganism, when life originated on this planet 3.8 billion years ago. There are people who will say that this is all random, it's not, and that this clumsy process could not be possible for the majestic beauty of our world. To them, I say, well, at least we agree that our world is beautiful, but, well, you're probably not going to enjoy the rest of this video. To me, there are two sorts of people in the world; those that are excited about the power and beauty and simplicity of the process of evolution, and those who don't understand it. And somehow, I live in a country where only 40% of the population believes that evolution is a thing. The only possible reason for that, that I can accept, is that they just don't understand it. It's time to get real people. (upbeat music) First, let's understand what we mean when we talk about the theory of evolution. Evolution is just the idea that gene distribution changes over time, which is an indisputable fact, which we observe all the time in the natural world. But the theory of evolution is a large set of ideas that integrates and explains a huge mass of observations from different disciplines, including embryology, paleontology, botany, biochemistry, anatomy, and geophysics. In everyday language, the word theory means hunch or even hypothesis, but in science, a theory is an idea that explains several phenomena at once. Thus, the theory of evolution is a bunch of ideas that explain many things that we, as humans, have observed for thousands of years. It's the theory that meticulously and precisely explains the facts and the facts are indisputable. So let's spend some time going through the facts and how evolution explains them all so well. First, fossils. The fossil record shows that organisms that lived long ago were different from those that we see today. Sounds obvious, but 200 years ago, it seemed a little bit crazy. When scientists started studying dinosaur fossils in the 1820s, they thought that all dinosaurs were basically giant iguanas. That's why the first fossil dinosaur was named Iguanadon. It wasn't until the fossils of two legged dinosaurs started showing up in the 1850s that scientists had to grapple with the idea that organisms of the past were somewhat similar to ones today, like dinosaurs were to reptiles, but many of them took on a diversity that's barely recognizable to us. And all those ancient not-really-iguanas were all extinct, either dying out completely or evolving into organisms that survive today, like birds. Fossils make it clear that only evolution can explain the origin of these new kinds of organisms. For instance, fossils taught us that whales used to walk. Whales are cetaceans, a group of mammals that includes porpoises and dolphins, and biologists long suspected that whales descended from land mammals, partly because some modern whales still have the vestigial remnants of a pelvis and hind limb bones. But it wasn't until recently, the 1990s and 2000s, that the pieces really came together. First, paleontologist discovered fossils of Dorudon, cetaceans that had different skulls from modern whales, but still had the same vestigial leg bones. Then they found even older fossil remains from another cetacean that actually had hind legs and a pelvis, but the pelvis wasn't fused to the backbone like ours is, so it did swim like a whale. But more importantly, it still had ankle bones, and they were ankle bones that are unique to the order that includes bison, pigs, hippos, and deer. So by following these clues left behind and fossilized bones, paleontologists were able to track the origin of whales back to the same origin as bison and pigs. This leads us to another series of facts that evolution explains, not how animals are different, but how they are incredibly similar. Last week, we talked about Carl Linnaeus an dhow he classified organisms by their structural similarities. Well, he didn't know anything about evolution or genetics, but when he began grouping things in this way, he hit upon one of evolution's most prominent clues, homologous structures. The fact that so many organisms share so many finally detailed structures, shows us that we're related. Let's go back to the whale, like my dog Lemon and me, the whale has two limbs at the front of its body, its front flippers. And so does this bat, its wings. Inside our limbs, we all have the very same structure. One longish bone on top, connected by two thin bones at the joint, followed by a cluster of small bones called the carpals, and then our fingers or digits. We choose our forelimbs for totally different purposes. The bat flies, the whale swims, Lemon walks and I, you know, jazz hands. Building limbs like this isn't the most efficient way to swim or fly or walk. Our limbs have the same structure because we descended from the same animal, something like this Morganucodon, which, yeah, had the same forelimb structure. In the first stage of our existence, every vertebrate looks almost exactly the same. Why? Because we're all descended from the same initial vertebrates. So yeah, our structures are the same as other mammals and other vertebrates, sure, but it also turns out that our molecules are the same as like everything. In fact, if we were ever to find life on Mars or something, the surefire way of knowing whether it's really extraterrestrial is to check and see if it has RNA in it. All living things on our planet use DNA and or RNA to encode the information that makes them what they are. The fact that we all use the same molecule itself suggests that we are all related, even if very distantly. But, what's more, by sequencing the DNA of any given creature, we can see precisely how alike we are. The more closely related species are the more of the same DNA sequences they have. So the human genome is 98.6% identical to that of a chimpanzee, our closest evolutionary relative and fellow primate, but it's also 85% the same as a mouse. And I wonder how you're gonna feel about this. About half of our genes are the same as in fruit flies, which are animals at least. So just as your DNA proves that you descended from your parents, your DNA also shows that you descended from other organisms and ultimately, from that one prokaryotic microorganism, 3.8 billion years ago, that is the grandparent of us all. Now, when it comes to species that are very similar to each other, like say, marsupials, their distribution around the world or their biogeography is also explained extraordinarily well by the theory of evolution. Animals that are the most similar and are the most closely related, tend to be found in the same regions, because evolutionary change is driven in part by geographical change. As we talked about in our speciation episode, when organisms become isolated by physical barriers, like oceans or mountains, they take their own evolutionary courses. But the timescale that we're talking about, the geographical barriers are much older and are often even the result of continental drift. So marsupials, you know about marsupials, they can be found in many places, but they aren't evenly distributed around the world. By far, the highest concentration of them is in Australia. Even the majority of mammal fossils in Australia are marsupials. So why is Australia rife with kangaroos, koalas, and wombats, while North America just has possums? Fossils show us that one of marsupials earliest ancestors found its way to Australia before continental drift turned it into an island 30 million years ago. More importantly, after Australia broke away, placental mammals, like us, evolved on the mainland mass and quickly out-competed most of the marsupials left behind in what would become North America and South America. So very few marsupials remain in the Americas, while Australia has been drifting around, like some kind of marsupial Love Boat. Darwin's finches are another example of bio-geographical evidence, as he wrote in the Origin of Species. Darwin observed that different species of finches on separate Galapagos Islands were not only similar to each other, but we're also similar to a species found on the South American mainland. He hypothesized that the island finches were all descendants of that mainland finch and changed over time to be more fit for their environments, a hypothesis that genetic testing has since confirmed. Now, you'll remember, I hope, a few weeks ago, when I told you about Peter and Rosemary Grant, the evolutionary biologists slash lovebirds who have studied Galapagos finches since the 1970s. One of their greatest contributions came in 2009 when studying finches on the island of Daphne Major. They discovered that the offspring of an immigrant finch from another island and a Daphne Major finch had become a new species in less than 30 years. This is just the latest example of our fourth body of evolutionary evidence, direct observation of evolution. Fact is, we have seen evolution take place in our own lifetimes. One of the fastest and most common changes we observe is the growing resistance to drugs and other chemicals. In 1959, a study of mosquitoes in a village in India found that DDT killed 95% of mosquitoes on the first application. Those that survived reproduced and passed on their genetic resistance to the insecticide. Within a year, DDT was killing only 49% of mosquitoes and it continued to drop. The genetic makeup of the mosquito population changed because of the selective pressures caused by the use of DDT. But it's not just tiny changes and tiny animals. We've also observed larger animals undergoing some pretty striking changes. In 1971, for instance, biologists transplanted 10 Italian wall lizards from one island off the coast of Croatia to another. 30 years later the immigrant lizards' descendants have undergone some amazing fundamental changes. Like even though the original lizards were mainly insect eaters, their digestive systems had changed to help exploit the island's most abundant food source, plants. They actually developed muscles between their large and small intestine that effectively created fermenting chambers, which allowed them to digest the vegetation, plus, their heads became wider and longer to allow them to better bite and chew the grasses and leaves. These are all great examples of microevolution, a little frequency changes that happened rather quickly and in small populations. Macroevolution is just that microevolution on a much longer timescale. The sort of thing that turns hippos into whales is a lot harder to observe for a species that, 200 years ago, thought the dinosaurs were big iguanas. The part of the power of the human mind is being able to see far beyond itself and the timescales that our own individual lives are limited to. And I, for one, am pretty proud of that.