If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

# The ideal gas law (PV = nRT)

The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume). No gas is truly ideal, but the ideal gas law does provide a good approximation of real gas behavior under many conditions. Created by Sal Khan.

## Want to join the conversation?

• First let me say THANK YOU! THANK YOU! for these great videos. I really enjoy watching these.

The question: How come the gas AMU (mass) is out of these equation? As f=ma, my understaning would be that the force should also be propertional to the mass of the particles (unless their velocity is inversly proprtional to the temprature) •   Very interesting question.

Temperature is the average kinetic energy, which, in turn is E = (m(v^2))/2 for each particle. Hence, if you have two gases with different molecular mass at the same temperature, the molecules in heavier gas will be moving slower, but still have the same kinetic energy.

You can think of it in this way - temperature describes both average speed and mass of the particles (Sal is a bit vague on this in the video).

Wikipedia seem to agree with me: http://en.wikipedia.org/wiki/Temperature
• Can't you derive the equation from Boyle's, Charles's, and Avogadro's law? Since volume is proportional to temperature, pressure, and moles, can you say that by adding proportionality constant R you can relate these in PV=nRT? • Why does temperature always have to be converted to Kelvin?? •   You have to convert to Kelvin because Celsius is a relative scale. Specifically, 0°C is NOT the point of no heat. Instead, 0°C was set as a convenient point for humans (specifically it is the temperature where water freezes at standard pressure). Likewise, doubling a temperature in Celsius is not doubling the heat (again, because the 0 is not an absolute 0).

But, to do these calculations, you must have an absolute scale. 0 must mean no heat. A doubling of the temperature must mean a doubling of the heat. Thus, you use Kelvin because 0K is the point of no heat. When you double a temperature on the Kelvin scale you really are doubling the heat.

Example: On the Celsius scale, if you double 1°C you would get 2°C -- which is hardly any warmer. The temperature that actually has twice as much heat as 1°C is 275°C (rounded to the nearest degree). On the Kelvin scale, you have this problem corrected.
• True or False: If one gas is more dense than another, it's because it has more molecules at 22.4L of the gas at stp.

I don't get it.... where is this explained? • If you solve the Ideal Gas equation for n (the number of particles expressed as moles) you get:
n = PV/RT

Thus, at STP, the same volume of all gases have the same number of molecules (provided the conditions are suitable for the Ideal Gas Law to apply).

A more dense gas has more MASSIVE molecules, but the same number of particles as compared to a less dense gas under the same temperature, pressure and volume.

So, in summary, the Ideal Gas Law states that under the same temperature, pressure and volume all gases contain the same number of molecules (but not the same mass).

Reminder: The Ideal Gas law does not apply when the temperature and pressure are near the point of transforming into a liquid or solid.
• If ideal gas laws are applicable only for 'ideal' gases , then why study them at all if there exists no such 'ideal' gas ? • • • My teacher told me that an ideal gas is one that follows Boyle's law, Charles' law and Avogadro's law strictly is an Ideal Gas and it is hypothetical but Sal says something else for describing the ideal gas. Help!! :| • The Ideal Gas is a model that GREATLY simplifies the math necessary for describing the behavior of real gases. As Andrew M mentioned, if the temperature is high enough and the pressure low enough that the gas is nowhere near liquifying or solidifying, then real gases usually behave close enough to ideal gases that we can use the Ideal Gas law.

If you go through the very difficult math for the equations for real gases, you generally get an answer only a fraction of a percent different from the much easier math of the Ideal Gas Law. However, if the temperature and/or pressure is close to where the gas becomes a liquid or a solid, then the Ideal Gas Law will give you VERY wrong answers. In those cases you have to use the much more difficult mathematics for the real gas equations of state. But, except when we have to, we don't use the other equations of state because they are so hard to work with. Most of the time an error of less than 0.5% is acceptable and we use the Ideal Gas Law.

Just for reference, one of the better equations of state that does much better at predicting the behavior of gases as they begin to condense into liquids is the Peng–Robinson equation. You may learn about it at this link http://kshmakov.org/fluid/note/3/
I think you will quickly see why we avoid that level of complexity whenever we can.
• what is the difference between ideal gas and normal gasses and noble gasses?? • • 