Main content
AP®︎/College Chemistry
Course: AP®︎/College Chemistry > Unit 1
Lesson 3: Elemental composition of pure substances- Empirical, molecular, and structural formulas
- Worked example: Calculating mass percent
- Worked example: Determining an empirical formula from percent composition data
- Worked example: Determining an empirical formula from combustion data
- Elemental composition of pure substances
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Empirical, molecular, and structural formulas
There are three main types of chemical formulas: empirical, molecular and structural. Empirical formulas show the simplest whole-number ratio of atoms in a compound, molecular formulas show the number of each type of atom in a molecule, and structural formulas show how the atoms in a molecule are bonded to each other. Created by Sal Khan.
Want to join the conversation?
- what's the meaningo of those double bonds ? 3:50(57 votes)
- A double bond is where there are four electrons shared between two atoms. You will learn more about these in future videos.(65 votes)
- We are taught in our school that the chemical formula of bleaching powder is CaOCl2, but checking it on Internet I came across the chemical formula to be Ca(OCl)2.
So which among the two is correct ? Please give the chemical structure of bleaching powder too.(18 votes)- The parenthesis in chemical formulas are from things called polyatomic ions. They’re basically groups of atoms with shared charges (mini molecules inside of molecules). The chemical formula CaOCl2 refers to one calcium atom, one oxygen atom, and two chlorine atoms. The formula Ca(OCl)2 refers to one calcium atom, two oxygen atoms, and two calcium atoms (two groups of calcium and oxygen atoms bonded).(6 votes)
- how do you actually calculate the empirical formula?(7 votes)
- It is derived from the molecular formula. Refer to this video : https://www.youtube.com/watch?v=ucU5PD6W3Ik(6 votes)
- Around, Sal says that the empirical formula is a ratio of 1:1. 2:40
If the ratio of Carbon to Hydrogen were something like 2:3, how would you write it? Cv2Hv3? It would look exactly like a molecular formula!(6 votes) - Atcan we say that for every oxygen, we have two hydrogen? 6:08(6 votes)
- Yes, entirely correct. 2H per 1O, or otherwise 1O per 2H(4 votes)
- what would the ratio look like if you were given a formula of 3 different elements?(4 votes)
- Here is an example. Glucose has the molecular formula C6H12O6. Its empirical formula is CH2O. Thus C, H and O are in the ratio of 1:2:1 .(7 votes)
- How do you depict Benzoic acid as a molecular and empirical formula?(5 votes)
- The following is the answer to your question. It's a molecular formula that can be written as C₆H₅CO₂H or C₇H₆O₂.
I Hope this Helps!(3 votes)
- I could not exactly understand the difference between the molecular formula and empirical formula? Could anybody please explain?(4 votes)
- Molecular formula shows exactly how many of each atom there is, while empirical formula shows the ratio. Sometimes the empirical and molecular formula are the same, like with water.(1 vote)
- how to find the molecular formula like when calcium carbonate is equal to caco3(4 votes)
- Note that CaCO3 is an ionic compound. For ionic compounds, the empirical formula is also the molecular formula. As ionic compounds generally occur in crystals that vary in number of groups of empirical units, the molecular formula is the empirical formula.
Put another way, ionic compounds are never made of lone molecules. Empirical formulae, which relate atoms in compounds, would be the same as the molecular formula, which relates the ions in the compound.
In sum, CaCO3 is the molecular formula too. It's the same for all ionic compounds.
Hope that helps.(1 vote)
- I know this maybe a dumb question but what are double bonds?(3 votes)
- there is a video on this topic which explains it in detail, i would suggest you to gradually get there. simplified, double bonds occur when atoms share 4 electrons (in single bonds they share 2)(4 votes)
Video transcript
- What I want to do in
this video is think about the different ways to
represent a molecule. So the most obvious way is its name. So, for example, you could be referring to a molecule of benzene. Benzene. But just the word "benzene"
tells you very little about what actually
makes up this molecule. And there's other naming
conventions that do give more information, but you might say, well, I actually want to know more about the actual particular
elements that make it up. Well, that might be, in that case, it might be useful to move
up to the empirical formula. Empirical, empirical. Empirical. Empirical formula. And you might be thinking, what does empirical mean? In general, the word "empirical"
is referring to something that comes from observation
or comes through experiments. If you could say hey, you
know, I from empirical evidence I now believe this, this
means that you saw data. This means that you have
some observations that make you think this new thing. The reason why we call what
I'm about to write down the empirical formula, is
because early chemists, they can't look, they
weren't able to look at just one molecule, but
they could at least come up with, they could observe
the ratios of the different elements that they had in a molecule. So an empirical formula gives you a ratio of the elements in the molecule. So an empirical formula for benzene is ... It is ... One carbon for every, for every hydrogen. Now you might say, OK, that's nice, I now know that if I'm
dealing with benzene I have one carbon for every hydrogen or one hydrogen for every carbon, but what does, how many of
each of these do you actually have in a benzene molecule? To answer that question,
that's when you would want to go to the molecular formula. Molecular. Molecular formula. And the molecular formula
for benzene, which is now going to give us more information than the empirical formula,
tells us that each benzene molecule has six hydrogens, and, sorry, six carbons and six, (laughs) I'm really having trouble today, six hydrogens, (laughs) six carbons, and, six hydrogens. Now, the ratio is still
one to one, you get that right over here, it's very easy to go from a molecular formula to
an empirical formula. You essentially are losing information. You're just saying the ratio, OK, look, it's a ratio of six to six, which is the same thing as one to one. If we wanted to, we
could write this as C one H one just like that to
show us that the ratio for every carbon we have a hydrogen. And we see that that's actually
the case in one molecule, for every six carbons
you have six hydrogens, which is still a one to one ratio. That may not satisfy you, you might say, well, OK, but how are these six carbons and six hydrogens actually structured? I want more information. And for that, you would wanna go to a structural formula. Structural formula, which will actually
give you the structure, or start to give you the
structure of a benzene molecule. A benzene molecule would be drawn like... So you would have six
carbons in a hexagon. So one, going to write this way, one, two, three, four, five, six carbons in a hexagon just like that. And then you have a
double bond, every other of these bonds on the
hexagon is a double bond. Each of these carbons are
also attached to a hydrogen, also bonded to a hydrogen. Each of these lines that I'm drawing, this is a bond, it's a covalent bond, we go into much more depth
in other videos on that, but it's a sharing of
electrons, and that's what keeps these carbons near each
other and what keeps the hydrogens kind of tied to each, or, the hydrogens tied to the
carbons and the carbons tied to the hydrogens. So let me draw it just like this. And this is only one
variant of a structural, it's hard to see this one I just drew, so let me see if I can do a little bit... Oh, that's about as good,
hopefully you see there's a hydrogen there, and there's
a hydrogen right over there. This is one variant of
a structural formula, some structural formulas
will actually give you some 3D information, will
tell you whether a molecule is kind of popping in or out of the page. Others might not be as explicit, once you go into organic chemistry chains of carbons are just
done, they're just ... You might see something
like this for benzene, where the carbons are implicit
as the vertex of each, there's an implicit carbon
at each of these vertices, and then you say, OK, carbon's gotta have, not gotta, but it's
typically going to have four bonds in its stable state,
I only see one, two, three. Well, if it's not drawn,
then it must be a hydrogen. That's actually the convention that people use in organic chemistry. So there's multiple ways
to do a structural formula, but this is a very typical
one right over here. As you see, I'm just getting more and more and more information
as I go from empirical to molecular to structural formula. Now, I want to make clear, that empirical formulas and molecular formulas
aren't always different if the ratios are actually, also show the actual number of each of those elements that you have in a molecule. A good example of that would be water. Let me do water. Let me do this in a
different color that I, well, I've pretty much
already used every color. Water. So water we all know,
for every two hydrogens, for every two hydrogens, and since I already decided to use
blue for hydrogen let me use blue again for hydrogen, for every two hydrogens
you have an oxygen. You have an oxygen. It just so happens to be,
what I just wrote down I kind of thought of in
terms of empirical formula, in terms of ratios, but
that's actually the case. A molecule of hydrogen,
sorry, a molecule of water has exactly two hydrogens and, and one oxygen. If you want to see the structural formula, you're probably familiar with it or you might be familiar with it. Each of those oxygens in a water molecule are bonded to two hydrogens, are bonded to two hydrogens. So hopefully this at least begins to appreciate different ways of referring to or representing a molecule.