Main content
AP®︎/College Biology
Course: AP®︎/College Biology > Unit 9
Lesson 1: Worked examples - 2015- 1a-c, Responses to the environment
- 1d-e, Responses to the environment & natural selection
- 2a-b, Cellular respiration & common ancestry
- 2c-d, Cellular respiration & cell compartmentalization and its origins
- 3a-b, Phylogeny
- 4a-b, Meiosis and genetic diversity
- 5a-b, Responses to the environment
- 6a-c, Population ecology
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
1a-c, Responses to the environment
Genetic and environmental influences on mouse activity cycles.
Want to join the conversation?
- What are the essential amino acids?(0 votes)
- There are nine essential amino acids: Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Threonine, Tryptophan, and Valine. Essential amino ac\ids cannot be produced by our bodies, they must come from the foods we eat.(19 votes)
- What does (DD) mean.(0 votes)
- For the 24 hr. period they stimulated Light for 12 hrs. and dark for 12 hrs. for the mice. (LD), But (DD) just means darkness for both 12 hrs.(1 vote)
- Why is O blood type the universal blood type?(2 votes)
- O is the universal donator.
Let's say that a patient has type A or B blood.
Even though type O has anti-A & B proteins, O can still go into A or B blood. This is because there is not enough O injected to actually clump around the A or B blood.
AB doesn't have any clumping proteins, so O can go there too.
Hope this helps!
P.S. Tell me if this is confusing so I can explain it better :)(8 votes)
- At aroundwhen sal is answering the essays, aren't they supposed to be in complete sentences? I know on my AP Psychology exam the essays were not to be scored if they weren't written in complete sentences and they were not supposed to just be definitions. Is it different for Biology? 7:30(3 votes)
- All of your AP free-response answers should be in complete sentences, unless otherwise stated by the question. The incomplete sentences here are just for brainstorming ideas to be used later in the actual answer.
Hope this helps!(6 votes)
- Is the universal donor O positive or negative? Because I used to think it was blood type O+ as the universal donor, until my biology teacher told us that O- was the universal donor because it had no antigens. He said that blood type O+ had the antigens that would be rejected by the recipients body. He said that O+ could only be received by the positive blood types, while O- can be received by positive blood types and negative. So, is O+ or O- the universal donor?(2 votes)
- Blood type O is the absence of antigen A and B. If you have the antigen for the rH factor then you have a positive blood type. The universal donor has no antigens so has to be negative do would be O-.(3 votes)
- So isn't it you retina that detects light?
Just checking.(1 vote)- Well when you think of it your retina couldn't do anything without your lenses to focus the light and without your optic nerve to send what your retina detected to the brain what would be the use of the retina. There are many more examples but I'm just going to stop here.(3 votes)
- Which blood group is called the "universal donor"?(0 votes)
- Actually o negative is the univeral donor because o positive can only give to other positives but negative blood groups can give to negative and positive blood groups(4 votes)
- how do HIV affected person doesn't show any symptoms(1 vote)
- It's very hard to spot HIV symptoms, I mean there are symptoms for it, but you have to do a test to see if the person is a carrier. Sometimes the symptoms show up too late or not at all.(1 vote)
- Atin the video, Sal circles six areas where the mice were inactive in the period of dark, but there were four other time were the mice were inactive that I could see. Why didn't he circle them as well? Might it just have been an oversight on his part? 3:03(1 vote)
- What is the rarest blood out there? and Why?(1 vote)
- There are some extremely rare blood types like U-, Fy(a-b-), RzRz, Jk (a-b-), Di(b-), Dr(a-), Kp(b-), Vel- and others. Some are limited only to certain populations. Why are they rare? They probably appeared as a mutation not that long ago (in evolutionary time) and they couldn't spread very far in such a short time. Also, some blood types inherit as a recessive trait which doesn't help them to spread very much. It's all very individual to every blood type.(1 vote)
Video transcript
- [Voiceover] "Many species
have circadian rhythms "that exhibit an
approximately 24-hour cycle. "Circadian rhythms are
controlled by both genetics "and environmental
conditions, including light. "Researchers investigated
the effect of light "on mouse behavior by
using a running wheel "with a motion sensor to record activity "on actograms, as shown in figure one." All right, so let's think
about what figure one is showing us. We have a picture of a mouse here that seems to be inactive, definitely not on the running wheel, even eyes closed, maybe it's sleeping. And then here, a picture of a mouse that is on the running
wheel, maybe running, with its eyes open. And then we see our actogram
here and it describes, "Strategy for recording
mouse activity data. "When a mouse is active
on the running wheel, "the activity is recorded
as a dark horizontal line "on an actogram. "When the mouse is inactive, "no dark line is recorded." So we can see here, it gives
us the activity for each day. So for day one, day
one is right over here. Let me do that in a lighter color so that I don't overwrite
what you need to see. So day one is right over there, and you can see from hour zero to hour 12, since we have no black
line, the mouse is inactive. We're not detecting activity
on the running wheel. And then when we have the
black line from hour 12 to hour 24, that means
we are detecting activity on the running wheel and so we can assume that the mouse is active. And then we have it again for day two, and the way this is set up, it looks like that pattern holds for every day. Let's keep going. "For the investigation, "adult male mice were
individually housed in cages "in a soundproof room
at 25 degrees Celsius." So they wanted to make
sure that these mice didn't bother each other, that this was definitely
controlled conditions. Soundproof, that they're not
impacted by outside noises, other mice, a variation in temperature, so they tried to for all of these things. "Each mouse was provided
with adequate food, "water, bedding material,
and a running wheel. "The mice were exposed to daily periods "of 12 hours of light," with the capital L, "and 12 hours of dark," capital D. L12, D12. So that's 12 hours of
light, 12 hours of darkness, "for 14 days, and their activity "was continuously monitored. "The activity data are
shown in figure two." All right, so this is an
actogram of mouse activity under L12, D12 conditions. Each row represents a 24-hour period and the dark horizontal
lines represent activity on the running wheel,
just like we saw before. But this is actual data
that we are recording. So in the first 12 hours,
the mouse are in conditions where there's light, and you
can see for the most part, on day one, we detect no activity. On day two, we also detective no activity. On day three, we detect
a little bit of activity, but for the most part, when it's light, we detect very little to no activity. And when it's dark, it's the opposite. We detect a lot of activity
on that running wheel. There's a few gaps right over here, but for the most part, the
mouse is active when it's dark. So the mouse is active when it's dark and inactive when it is light, which is the opposite of most human beings, or frankly, well, definitely human beings,
where we tend to be active in the light and inactive in the dark. Interesting. After 14 days, so that was
just with 12 hours of light, 12 hours of darkness. "After 14 days of L12, D12," so it's 12 hours of
light, 12 hours darkness, "the mice were placed
in continuous darkness." Capital D, capital D. DD, that sounds unpleasant. Continuous darkness. And their activity on the running wheel was reported as before. "The activity data under
DD," continuous darkness, "conditions are shown in figure three." All right, so this is interesting here. So it looks like on day one, the mice were inactive, not 12 hours, like we saw when we had 12 hours of light, but it looks like about 10 hours. And then from hour, I don't
know, this is maybe hour nine or 10, to about hour, it looks like maybe hour 21, they were active. Maybe 12 hours, maybe a
little less than 12 hours. And then inactive,
active, inactive, active, but it seems to be less than for 12 hours. And then they're active
for less than 12 hours. So you see everything shifting
up every 24-hour period because they tend to be
inactive for less than 12 hours. It looks like it's 10
or 11 hours each day. And then active for a little
bit less than 12 hours. So that's why you see
this shifting pattern where every day the activity starts at roughly an earlier period. It's not a perfect trend, but you see the trend over multiple days. I can draw, I can show a line that goes something like this. You can see every day
we are starting activity at an earlier hour. And every day we're
also ending our activity at an earlier hour. And there's a lot more,
I guess you could say, sporadic activity going on. And remember, this under
continuous darkness. All right, let's see if we
can answer the questions. "The nervous system plays
a role in coordinating "the observed activity pattern of mice "in response to light-dark stimuli." Yes, that makes sense, of course. "Describe one role of each "of the following anatomical structures "in responding to light-dark stimuli." A photoreceptor in the retina of an eye. Well, this detects light. Detects light and sends signal. Or maybe I'll say transmit signal. Transmits signal that eventually gets to brain. That eventually gets to brain. Gets to the brain. All right? The brain. Well, it receives signals. It receives. I before E, except after C. It re-see (laughs), it receives, it receives signals. It receives signals and
then coordinates activity based on that. Coordinates activity response based on that. Based on signals. Based on the signals. So this is really just, you know, do we know what a photoreceptor, a brain, and a motor neuron, I guess as related to this test. And then a motor neuron, well, these are neurons
that would stimulate. You tend to think of things
that would be, you know, like motor movement, like muscles, but they also control things like glands. So they stimulate muscles, glands. And glands could be
especially relevant here because glands might be the things that release or don't release hormones that might put the mice
to sleep or wake them up. Glands that might release
hormones related to sleep. Might release hormones related to sleep, wake. Related to sleep and activity. All right, so I think that's, we've taken a decent job
of describing the role of each of those. All right, let's go to part B now. "Based on an analysis of
the data in figure two, "describe the activity pattern of mice "during the light and dark periods "of the L12, D12 cycle." Well, this was pretty straightforward. When there was light, so they were inactive during light. Inactive during light. Active during dark. Active during dark. I could've written the answer down below, but I think I could've
squeezed this one in. That's the basic idea. L12, D12 cycle, we saw right over here. Inactive during light, and then active during the dark. All right. Active during the dark. Okay. "The researchers claim that
the genetically controlled "circadian rhythm in
the mice does not follow "a 24-hour cycle. "Describe one difference
between the daily pattern "of activity under L12, D12 conditions, "figure two, and under," continuous darkness, the DD
conditions in figure three. And "use data to support
the researchers' claim." All right, well, we
talked about this already. So under DD, mice active and inactive for less than 24, or less than 12 hours each. 12 hours each. And then we could say versus 12 hours inactivity under light, under, I could say, L12. And 12 hours activity under D, under D12. So under continuous darkness, mice active and inactive
for less than 12 hours each versus 12 hours inactivity under L12 and to 12 hours activity under D12 when it was dark for 12 hours. So less than 24-hour cycle. So less than 24-hour cycle. Activity also more sporadic. Activity also more sporadic. Sporadic, or we could say less continuous. Less continuous, there's
definitely more times where the activity periods is broken up by inactivity or the inactive periods is broken up by activity. Less continuous. All right, I feel pretty good about that. Now, let's see. Actually, since I'm already
at 11 minutes in this video, I'll continue the next two
parts in the next video.