Main content
AP®︎/College Biology
Course: AP®︎/College Biology > Unit 8
Lesson 3: Population ecology- Exponential and logistic growth in populations
- Exponential & logistic growth
- Population regulation
- Population regulation
- Population growth rate based on birth and death rates
- Per capita population growth and exponential growth
- Logistic growth versus exponential growth
- Population ecology review
- Population ecology
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Population regulation
There are two types of population regulation: density-dependent and density-independent. Density-dependent factors, like competition for resources, predation, disease, and waste accumulation, limit population growth based on population density. Density-independent factors, such as natural disasters, affect populations regardless of density. Understanding these factors helps us consider human population growth and potential carrying capacity.
Want to join the conversation?
- What was the solution to the rabbit problem in Australia?(21 votes)
- In the 1950s, the government turned to biocontrol. They released rabbits infected with myxoma—a rabbit-specific virus—into southeastern Australia. The myxoma virus was the first ever virus to be purposefully introduced to the wild to eradicate an animal.(8 votes)
- Did they ever find a solution to what happened in Australia?(8 votes)
- https://allthatsinteresting.com/bunny-rabbits-in-australia
This is mostly up to date.
They are trying to keep it under control but still, rabbits are too much populated.(7 votes)
- i do not what so ever get what is the rabbit promblem someone help(7 votes)
- Too many of any animal will degrade the ability of the environment to support life.
This is particularly true for introduced animals (e.g. rabbits in Australia) where the natural controls that limit populations (e.g. predators and disease) tend to be less efficient or even absent. In addition, the "prey" (in the case of rabbits this is plants) have had no opportunity to adapt to the introduced animal and species can be driven into extinction.
The wikipedia article on this should give you more detail:
https://en.wikipedia.org/wiki/Rabbits_in_Australia
There are also a many youtube videos (warning: most of these involve scenes that may be disturbing if you're sensitive to violence) — for example:
https://www.youtube.com/watch?v=pgPhn4tYxJQ
Does that help?(9 votes)
- Are there other Density Independent factors besides natural disasters? What if a new virus attacked the food-source of the rabbits. Would that be Density Dependent because it's a biotic factor, or would it be Density Independent because it has nothing to do with the rabbit population?(5 votes)
- If it was equally likely with a smaller population, then it would be a density independent factor.(3 votes)
- Sal draws a smooth curve, even for the density-independent factors.
Shouldn't Sal draw, like a sudden drop in population and then a steady increase?
Thanks.(5 votes)- I do agree, but natural disasters again, cannot wipe off 90% of the population of species. Even for Dinosaurs it wasn't like that.
so I think that his curve is accurate.(4 votes)
- what is or mean the carrying capacity(5 votes)
- Carrying capacity is how much a population can grow until the ecosystem can't support it. For example, the population of rabbits can grow forever because then there would not be enough food water or territory for them to sustain their population. Their population size would lessen until the ecosystem could support them again, then their population would rise, creating never-ending cycle.(4 votes)
- how is humans affecting growth of poulation(4 votes)
- Growth of our human population?
Well we can control number of our offspring.
Unfortunately wars and epidemics take place.(4 votes)
- Could a very contagious disease, one that is able to spread among even very low population, be considered dependent or independent? If it was so good at infecting that many individuals could get infected, regardless of density?(3 votes)
- I believe that even if it was a very contagious disease it would still be considered a dependent because like all diseases it would affect more organisms when the density increases. Even a very contagious one. Therefore, due to the variation in how many organisms would get infected, it would still be considered dependent. However, if there were a disease that could only infect, per se 10 organisms no matter the population density, then I believe it would be considered independent because the disease's infection rate doesn't depend on the population density.(3 votes)
- Are there any other factors other than natural disasters?(3 votes)
- There are multiple other factors besides natural disasters that can cause a decrease in the population of organisms such as the climate, human activities like releasing fossil fuels, diseases, parasites, predation, and competition for shelter, food, and water.
Hope that helps!(3 votes)
- AtSal makes the t an arrow. 0:49(2 votes)
Video transcript
- [Voiceover] What I
want to do in this video, is think a little bit more about how populations can be regulated. And broadly speaking, we can think of the regulation of populations
it two different categories. There's the regulation
dependent on density, so density, density dependent
regulation, density dependent. And then, there's the type of regulation that isn't dependent on density, so we could call that density
independent regulation. Independent, independent regulation. So first let's think about
density dependent regulation. Let me draw a little chart
here, to help us visualize that. So let's say that that
axis is the population. I'll say P for population. And let's say this axis is time. So, T for time. In previous videos we
talked about a population, and I like to use the example of rabbits, how it could grow exponentially. So if it's just growing a
certain percent every month, that population will grow exponentially, but we can't expect that that
will just happen forever, if rabbits just kept
growing exponentially, it wouldn't take long for them to cover the surface of the earth, and and then fill the universe, if in some way they weren't
limited by anything. But we know that they
are limited by things. And so the environment
only has a certain amount of carrying capacity, and
we'll think a little bit about this carrying capacity in a second, and what's determining
the carrying capacity. And so as the density of the
rabbits in a certain area get higher and higher
and higher, well then the density dependent,
use a different color, the density dependent
factors start to play, the density dependent limiting factors. And what could be some of these density dependent limiting factors that keep the population from going dramatically above the carrying capacity? Well the most obvious one could be competition for resources, competition, competition, for, resources. And the one that might come to mind most clearly
is food resources. So this is actually a picture
of Australia in the mid 1800s. And they had a bunny population problem. The rabbits were first introduced in order to have a little bit of hunting, but then they reproduced like rabbits. And it was estimated that at some point you had over a billion rabbits that had populated the
country, and that was, you might say, how cute,
but it was a huge problem. (stammering) The were
eating all of the farmable, they were eating crops. They were eating the grass that other types of livestock would graze on. So it was a huge infestation of rabbits. And so you can imagine one
competition for resources is just the grass itself. In this picture you can
see the land is barren. Maybe this happened because the rabbits ate all of the vegetation here. So, competition for resources,
one type of resource could be food, another type
of resource could be water, there might only be so much water to support organisms of a certain kind. You know here, we often
talk about animals, but it could be plants,
or it could be bacteria, it could be all sorts of organisms
that we're talking about. And if we're talking about plants, we could think about light. You could say, well what limits
having an infinite number of plants in a certain area? Well, water will limit,
the nutrients in the soil will limit, but also access to light. You've seen pictures of a
dense canopy in a rain forest, and the plants are trying to seek out whatever gap in the canopy they can find, so that they can get some
access to that light. Now there's other examples, and this wouldn't apply
as much to, say, plants, but the idea of shelter. This might apply to humans, or to other types of animals that maybe
need shelter in order to hide, or a place to reproduce, or whatever else. So at some point, if the
population density gets too high in a certain region, then these things are going to limit how dense
the population can get, or frankly just what the
population actually is, and so that would lead, once again we talked about this in a previous video, to this logistic curve right
over here, where we just, we don't, we just start
approaching the carrying capacity, and it is possible that you could even go above the carrying capacity
and then you're at kinda this very unstable situation,
and then something happens and you go below it, then you go above it, and then below it, and
then something like that. But what are other
density dependent factors that we could think about? Well, another thing is,
if you were a predator, when, say, the rabbits become this dense, it's much easier to
start to pick them off, it's much easier to get your lunch. And so, predatory factors, or we could say predation, predation. Once a population gets large
enough and dense enough, it might be the predators who can say, hey, we can start, it's way
easier for us to get our lunch. Now the other thing, it might
be a little less obvious, but when you have a
high density population, and there's examples of this
in medieval times in Europe, and even in modern times
today with human populations, but this happens with all organisms, is that when you become
a dense population, there's more interaction. There's more contact, there's more sharing of resources like water, and so disease and parasites becomes an issue. So let me write this down,
disease, disease, and parasites can spread much easier, and they're much more likely to
start limiting the population. The thing that always comes
to my mind is the plague in medieval times, where
it was very easy to spread from one human to the next, or frankly from rats to
humans, and whatever else. Now the other thing, and this is maybe somewhat related to everything else we've talked about, is waste accumulation. So let me write this right over here. Waste. If you have a really
high density population, and the waste is just everywhere,
it could poison the water, it might poison sources of food, it might help the spread
of disease and parasites. And once again, all of
these things help define what the carrying capacity, how dense can a population
get in a certain region. Now you might say, well maybe they don't have to stay in a region, maybe they can go and explore other
places, and that's possible, and that's been the story for many different types of species. Lemmings are famous for, when
their population gets dense in a certain area, groups of them start just running to start
exploring other areas. Sometimes running in directions that are not that good for them. So all of these are
density dependent factors. And a lot of these, as
we just talked about, you could think of them as biotic factors. They're related to other
living things around. The density independent
factors tend to be a-biotic. They tend to be not
related to living things. So the most common
density independent factor is natural disasters. So, natural, natural disaster. We have a picture here of a forest fire. The deer population here
might not be in any way close to their carrying
capacity, but despite that, the forest fire maybe might
kill off a lot of the deer. Other natural disasters,
you could have a flood, you could have a tsunami, you could have a meteorite coming from outer space. That happened to the dinosaurs. To just knock out huge populations. And so, density independent factors, you could have the
population growing and it's, and at just some random point it just, there's some density independent factor, there's a forest fire, there's
a flood, or something else. And then maybe the
population grows from there, and eventually gets closer
to its carrying capacity, who knows, but the density
independent factors, once again, it's not related to where
we are on this curve. It could happen at any
time, and to some degree they feel a little bit more random. Now, with all of this talk
about carrying capacity and the different density
dependent factors, you might be thinking well,
what about human beings? We are for sure a species, and so the same ideas apply to us. And so is there a
natural carrying capacity for the environments that we are in? And there's a famous philosopher
scientist Thomas Malthus, and I have a whole video on him, but he hypothesized that humanity
had a very serious problem. Because our populations
were growing exponentially, so this is population, this is time, and so he said, look, there's just a natural carrying
capacity for human beings. And as human beings just
kept growing exponentially, We would hit that carrying capacity, and the term for that carrying capacity, in the case of human beings,
that Thomas Malthus set up, and there's a whole video on
this, is the Malthusian limit. And he hypothesized
that once you crossed it or approached it, there
would be all sorts of crises, that once you're at
this carrying capacity, there might not be enough food, and then there might be a famine,
or we go across it and then disease spreads a lot more. And so he was just applying these ideas of density dependent
factors to human populations and said hey, this is not going
to be pleasant for humanity. Now what's been interesting,
is that humanity has found ways repeatedly, of pushing up the carrying capacity for us as a species. We've been able to do it,
frankly through technology. Frankly finding ways to grow food in denser and denser ways,
ways to stave off disease, ways to get rid of waste
and sewage and all of that, so it's an interesting
philosophical question to say, is there ever gonna be a point where human being just hits this Malthusian, where human society hits
this Malthusian limit, or are we always going
to be able to fend it off by just better and better
technology, or maybe even just regulation of the population itself, so that we don't, you know,
where we just have whatever, birth control, or family
planning, or whatever it might be, so that we are less likely
to hit some eventual limit.