Main content
AP®︎/College Biology
Course: AP®︎/College Biology > Unit 3
Lesson 4: PhotosynthesisPhotosynthesis evolution
Ancient cyanobacteria produced oxygen as a byproduct of photosynthesis, changing the composition of the atmosphere over time in the Great Oxygenation Event. These cyanobacteria also led to the evolution of chloroplasts when they started living inside other cells, a process called endosymbiosis. The cyanobacteria provided the larger cell with sugars from photosynthesis, and the larger cell gave protection and nutrients.
Want to join the conversation?
- How many times did photsynthesis evolve?(4 votes)
- Researchers studied the molecular machines responsible for photosynthesis and found the process may have evolved as long as 3.6 billion years ago.
I hope I answered your question!(4 votes)
- Is this part of the Ap bio exam ?(3 votes)
- Do some plants have more glucose than others?(0 votes)
- Most plants produce more glucose than they use, however, and they store it in the form of starch and other carbohydrates in roots, stems, and leaves. The plants can then draw on these reserves for extra energy or building materials.
Hope this helps!(5 votes)
Video transcript
- [Instructor] In this
video, we are going to talk about the evolution of
photosynthesis on Earth because that's the only place that, at least so far, we're aware
of photosynthesis occurring. I personally believe that it's occurring in many places in the universe but we don't really know just yet. But first, a reminder of
what photosynthesis even is. It's the process where organisms are able to take carbon
dioxide in the atmosphere in the presence of water. And then use the sun's
energy, so sunlight, to then produce sugars, C6H12O6 and three oxygen, so O2. Now, the way I've written it, this chemical equation right
over here, it hasn't balanced. So see, I have six carbons here, so let me put a six out front there. But now, let's see, I
have 12 hydrogens here. I only have two hydrogens here, so let me multiply this by six as well. And let's see, on the left-hand side, I have two oxygens times six is 12 plus another six oxygens, 18 oxygens, so I need 18 oxygens over here. I already have six right over here, so I'll need another 12 right over here, so I'll put a six out front. So, I have balanced that. It's important for you to realize that this is a really big deal. You would not exist
without photosynthesis, and I know what you're thinking. You don't photosynthesize things. But the things that you eat or the things that you eat,
the things that they eat, they do some sort of photosynthesis. At the end of the day, our
energy is coming from the sun. Even if you're eating an animal, that animal might be eating another animal that eats a plant, and that
plant is using the sun's energy and it's storing it in the form of carbon-based molecules,
oftentimes sugars. And then when we eat these things, we are able to produce energy for them and do things like educational videos. But an interesting question
is where does this come from. And a straightforward answer is we don't have all the answers but scientists have a reasonably good idea of where it probably came from. Today, we can observe cyanobacteria. This is what cyanobacteria looks like. It is like all bacteria prokaryotic and it is able to conduct photosynthesis. And scientists believe that organisms not too
different from cyanobacteria, probably an ancestor of cyanobacteria, existed on Earth two
and half, three billion, maybe even older, maybe even further back
in time, years ago, and that's early in Earth's history. Earth has only been around for about four and a half billion years. And that ancestor of
cyanobacteria, like cyanobacteria, was able to take carbon
dioxide in the atmosphere in the presence of water
and produce oxygen. And even though this is bacteria and each of these
organisms are very small, in aggregate, they can have
a pretty significant impact. For example, this is a
cyanobacteria plume near Fiji and you can see that these
are pretty significant things that can be a significant contributor to oxygen in the atmosphere. And scientists believe that it was these
ancestors of cyanobacteria that as they evolved on Earth and started growing and
growing and multiplying that they started to
affect Earth's atmosphere. So, what you see in this
chart right over here is our best sense of
what the oxygen content in the atmosphere was
if we go back in time. And we can start to figure this out based by looking at rock
samples that are very, very old, by looking at the fossil
record, very, very old. So, just so you get, you
understand what's going on here, this horizontal axis right over here, this is billions of years ago. This is one billion years
ago, two billion years ago, three billion years ago,
3.8 billion years ago, so it covers most of Earth's history. If you just wanna put things in context, humans, modern humans
have only been around for about two or 300,000 years, so we wouldn't even show up as a pixel on this diagram right over here. So we're going back into deep time. And scientists believe that the first photosynthetic organisms might have evolved approaching
three billion years ago, although we're not exactly sure. And those organisms might
have been producing oxygen from the photosynthesis, but
it might have been absorbed by things like the ocean. But eventually, those organisms, probably these ancestors of cyanobacteria became significant enough that the oxygen started
pouring in the atmosphere, and we start to see that right over here. Before this point, the oxygen was pretty
close to zero percent and then right over here at
the Great Oxygenation Event, I'll just call it GOE, all of a sudden, oxygen becomes a larger and larger percentage of the atmosphere, and these two lines represent
two different estimates of what percentage of
the atmosphere oxygen was at these various times, and it grew all the way to modern times where oxygen is roughly 20
or 21% of our atmosphere. And the reason why this is sometimes called
the Oxygen Catastrophe, is that there were a lot
of anaerobic organisms that found oxygen poisonous, and so there was a great extinction event from all of these oxygen
in the atmosphere, but it was not a catastrophe
for what eventually would be us because we are dependent,
not just on the sugars from photosynthesis,
but we're also dependent on the oxygen from photosynthesis. We use this oxygen to conduct respiration. You can almost view respiration
as a backwards process. You take your sugars and
in the presence of oxygen, you are able to extract that
energy from those sugars so that we can live. Now, an interesting question
is at what point did we go from these prokaryotic bacteria organisms to eukaryotic organisms that are able to perform photosynthesis? Most notably, plants. Well, this goes back to
endosymbiosis theory. We have a whole other video on that, but it's this idea that the ancestors of the cyanobacteria might
have lived in symbiosis with another eukaryotic cell, where the cyanobacteria ancestor was able to harness light energy to produce sugars for the larger cell. And in return, the larger cell was able to give protection or nutrients. And so, we believe, based
on endosymbiosis theory that chloroplasts, and right
over here, you see plant cells with visible chloroplasts in them, that chloroplasts are actually descendants of those ancestors of cyanobacteria, cyanobacteria would be
other descendants of them, but these are the ones
that started to live in symbiosis with what would
later become plant cells. And good evidence that
these might have ancestors that used to live independently
is that they have DNA that is very similar to
the DNA of cyanobacteria. They have ribosomes, their own ribosomes, that are very similar to the
ribosomes of cyanobacteria. And so, like mitochondria,
we believe chloroplast originated as independent
bacteria-like organisms and eventually were engulfed
into eukaryotic cells. So, I will leave you there. Photosynthesis is a big deal,
and it's really interesting to think about where it came from. It likely evolved on Earth
many billions of years ago, probably close to three billion years ago, but around 2.3, 2.4 billions years ago, it fundamentally changed the planet where you had oxygen
pouring into the atmosphere, killing a lot of organisms, but making it possible for
many other organisms to live. And those early photosynthetic organisms, some of them had descendants that ended up living in symbiosis with larger eukaryotic cells that would eventually evolve
into things like plant cells.