If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Bridge design and destruction! (part 1)

This is a two part video that introduces the different types of bridges. The bridge types will be introduced in historical order from simple (beam and arch) in the first video to more complex (truss and suspension) in the second video. This will show how bridges evolved as our designs and available materials expanded. The design of each bridge will be shown schematically along with the load distribution. The advantages and limitations of each type will be described. Video of actual bridges around Boston of the different types will be shown with the load distributions overlaid on freeze frames. Other iconic bridges will also be shown as still images with load distributions. Technical concepts covered will be tension, compression, bending, span, force balances, material selection and beam/cable design. License: Creative Commons BY-NC-SA More information at http://k12videos.mit.edu/terms-conditions. Created by MIT+K12.

Want to join the conversation?

  • leaf green style avatar for user 福龍丸
    In the upper right, there is the load reading. What does lbf stand for? Pound force or something?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • leaf green style avatar for user Chris
    Where do you get the materials for building the bridge? What kind of wood do you need? Where do you get it?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user NotMyRealUsername
    Where could one get a laser like the one in the video? Also, did anyone notice the crazy guy in the arch bridge was missing a hand?
    (5 votes)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Wayming
      Yes, I did notice the crazy guy (a crook head) was missing a hand.
      I think the laser used would cost more than a Ferrari! That's industrial strength, a real investment even for a manufacturing company. I think MIT has it for projects like this one.
      (6 votes)
  • hopper cool style avatar for user Christine
    At , why do they put another piece of wood? Is it for the load?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • leafers ultimate style avatar for user eightsquare
    Great video! I love how innovative designs help distribute the load. But as this experiment showed, beam bridges spanning long distances are rather weak, but I collect that they were the first ever types of bridges used. So were there a lot of accidents initially or was there a weight limit or a vehicle limit or was the bridge made of really heavy materials to compensate for the structural weakness?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • old spice man blue style avatar for user peanut butter
    At , was that a 3-D printer? Where can you get one of those?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leafers ultimate style avatar for user abdul-hakeem
    Over all what is the strongest type of bridge when each bridge is in its prime circumstance
    (4 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user Naman Razdan
      It really depends in what scenario... Beam is often the cheapest and not the strongest. Suspension is good for long distances. Arch is good for small to medium size. You can put a truss on abeam to strengthen it. A good truss will often be largely compromised of triangles.
      (2 votes)
  • leafers ultimate style avatar for user Scott
    If I may, I'd like to go off-board for a second and draw a connection to an Art History video I happened to watch on KA before this! The video in question is Birth of the Gothic: Abbot Suger and the Ambulatory at St. Denis.

    At around , the speakers begin to discuss rounded vs. pointed arches, and their load distributions. What sort of benefit might a pointed arch have for a bridge, or is it not at all desirable?
    (5 votes)
    Default Khan Academy avatar avatar for user
  • male robot hal style avatar for user Isaac Zhao , " The 3.1415 Eater"
    I noticed he mentioned that arch and truss bridges are good at long distances. If this means that in short distance bridges, beam bridges are superior, then why not have a long beam bridge with lots and lots of columns or straight vertical supports ,like the ends of the bridge, in between?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leafers tree style avatar for user Trevo the gecko
    So in order to make a longer and more sturdy bridge, you need more arches.
    So are beam bridges for shorter distances and arch bridge for longer? Also, which bridge design are most sturdy for long distances (not just the ones in this video)?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user Alan Lai
      More arches would allow you to make a longer bridge, but you would need supports in the middle of the bridge (which isn't always possible). To make longer bridges, other designs are usually used (truss and suspension). Part 2 covers those designs.
      (3 votes)

Video transcript

When was the last time you had to do this, or this, to get across a stream, river, fjord or lava pit? Probably never, because we have these things called bridges. Bridges are awesome. But what are all these different types of bridges that you see around? Why don't they all look the same? Let's find out. Engineering. The most basic type of bridge is a beam bridge. It has the most simple design, with a beam, also called the bridge deck, that is supported at both ends. Let's drop into our diagram mode to see how the forces act upon this bridge. When a load is applied to these bridges, they bend and experience two types of forces. The top of the beam is pushed together, which is called compression. The bottom of the bridge is pulled apart, which is called tension. Here, we are using lasers to build model bridges out of balsa wood and plywood. Always wear purple gloves while handling balsa wood. Safety first kids. You can see the simple design. Now, let's see what happens when we apply forces to it. To do this, we'll use a compression tester that can apply up to 20,000 pounds of force, although we probably won't get that high on this test. The compression tester will apply a load, or in other words, a weight, and measure the strength, or just how far the material moves in response to a load. Also to help us on this test will be these LEGO people, who will measure the ability to be launched from a bridge when it breaks. Critical information for bridge designers. Officer. Hello. You see that as the load increases the bridge bends. And it eventually breaks at a load of 115 pounds. But now, what if you want to span a longer distance? Here we use the same deck material on top, but we have doubled the length of the bridge. This time, our main test subjects will be the happy former chef, hat man, bike guy with no helmet-- shame on you. You can see that the longer bridge bends even more, and it breaks a much lower load, only 25 pounds, which is 80% percent weaker than the short beam bridge. Plus, the LEGO people get launched into space. That isn't very good. We want the bridge the sport a lot of weight over a long distance. So how can we make bridges that span longer distances? There are other bridges designs that allow us to use the same deck material and span longer distances. This takes us to the curviest of bridges, arch bridges. An arch is a great way to evenly distribute a load, and has been used in bridge building for a long time. In this example, we just have a beam bridge with an arch underneath. The load is distributed through the arch into the ground. Notice how only compressive forces are present, and no tension forces. This is great for wood and stone bridges, because they are much stronger in compression than tension. In our model arch bridge, we used the same long bridge length, with added arch supports on both sides. To help us is tricycle man, helmet-- good job-- classy businesswoman, and this, crazy guy. Let's go. You can see that the beam does not bend as much with the arch underneath. And that reaches a higher load before it fails, 100 pounds, which is 500% stronger than the long beam bridge. Here, we have seen that beam bridges get weaker as they get longer. Adding an arch makes the bridge very strong. But arches have length limitations. Beam and arch bridges historically have relied on wood and stone as building materials. These materials are usually only strong in compression, and not in tension, which restricted the designs that could be used. However, with the discovery of steel bridge builders now had the ability to add structural units that would be strong in tension. This led to more intricate styles of bridges that we will explore in our next video. [MUSIC PLAYING]