Main content
American Museum of Natural History
Course: American Museum of Natural History > Unit 2
Lesson 1: Planets- The Pluto controversy: What's a planet, anyway?
- How was our Solar System formed?
- Features of planets
- The search for life
- Curiosity: Searching for carbon
- Seeing planets like never before
- Solar System glossary
- Quiz: Planets
- Exploration Questions: Planets
- Answers to Exploration Questions: Planets
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Seeing planets like never before
Until the end of the 20th century, ours was the only planetary system known. We now know of more planets outside our solar system than within it. Astronomers have now located more than 1,000 planets orbiting stars other than our own, and the latest observations are starting to reveal what these planets are like. The American Museum of Natural History-led Project 1640 is at the forefront of this research. The project’s advanced telescope instrumentation can spot chemical fingerprints that will help characterize how exoplanets form, evolve, and differ from familiar planets closer to home. Created by American Museum of Natural History.
Want to join the conversation?
- What is the average distance between stars?(13 votes)
- It is not possible to know because we don't know about the further part of the galaxy. Pretend it's about 10 light years between the stars near us, but it could be about 1000000 light years far away from each star to star.(1 vote)
- Is Jupiter the largest known planet?(4 votes)
- According to NASA Exoplanet Archive: http://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=planets&constraint=pl_pnum%20%3E1
The most planet with the most mass is Kepler-47b(2 votes)
- What makes a planet? What makes scientists call them planets?(3 votes)
- You can find it in here on 'the Pluto controversy: what's a planet, anyway?' article.(1 vote)
- why are planets important?(2 votes)
- Because they source our life without planets we won't be living. Planets contain iron which is very important to our health. Scientists believe the iron that we have in our bodies come from the inner core of annihilated planets. Without planets we won't be living.(1 vote)
- Is Professor Ben Oppenhiemer related to the head of the Manhattan project?(1 vote)
- Dr. Oppenheimer in his CV describes himself as a software developer. Julius Robert Oppenheimer had two children, one of whom committed suicide at age 32. His Wikipedia entry does not extend beyond a mention of his children. His brother Frank founded the Exploratorium, which is a Khan Academy partner. So, no real answer here to your question, but probably not.(2 votes)
- Did anyone spot other planets before our galaxy was the only one?(1 vote)
- Why was Pluto degraded from its planet status?(1 vote)
Video transcript
The idea that planets orbit other stars than
the Sun is nothing new. The Greeks back thousands of years ago discussed this idea. But the scientific evidence for it really didn’t come about until the early to mid-90’s. At this point, we know of the existence of roughly a thousand planets orbiting stars
other than the Sun. We know about their mass distribution, the variety of orbits that they
occupy. But we know very little about the chemical composition of their atmospheres,
and we know nothing of the surfaces of the planets that we have detected. Project 1640
is called that because we observe wavelengths that are just redward of what a human eye
can detect, in what we call the near infrared, and the wavelength of light at which the project
can see the faintest planets is actually 1,640 nanometers. The specific goal of this project
is to try to see and study in detail as many planets as we can. There is such a broad range
of possible planets out there with a wide range of properties that people really didn’t
imagine even just a few years ago. For example, there could be a world of water, or there
maybe a giant lava world, or a planet with a huge gas layer on top of it so that we’d
never see the surface. We have no idea. And I think by expanding the types of planets
that we know of people can come to a far better understanding of ourselves and how we fit
into this Universe. The problem is that these planets are very, very faint, and they’re
right next to extremely bright stars. So the whole trick here is removing the light of
the star without destroying the light of planet. A little more. There we go. We’ve just filled
the infrared camera with liquid nitrogen in in order to cool down the detector so that we
can actually see planets and stars, and this is all in preparation for installing the instrument
on the telescope tomorrow. Here we go. Are we high enough to push in? And this Ethernet
is labeled DAK USB. It’s a USB extender. Trying to find one of these exoplanets takes
a lot of advanced technology. Imagine a firefly flying around a lighthouse. To be able to
see the firefly, we have to block out the light from the lighthouse. And we use a coronagraph
to do that, and that’s a very high-tech version of putting your thumb over the lighthouse.
But you’re trying to do this through the Earth’s atmosphere. And if you’ve ever
looked across a hot road in the summertime—that’s the distortion in the atmosphere that we’re
trying to take out using our adaptive optic system. We also have a wave front control
system that helps to stabilize the telescope itself. All those have to work together perfectly
to give us the suppression of the starlight we need to let us pull out the faint images
of the planet itself. So I managed, I think, to get four of the objects we wanted in. O.K.
And there’s just one decent looking survey star. Right. Observing at Palomar is always
a race. You’re racing against the Sun. The moment the Sun goes down, you’re just going
bang, bang, bang from exposure to exposure to target to target and trying to collect
as much data as possible. All right, the next star, Gene, is 40273. O.K. Thank you, moving.
We want to choose fairly nearby stars so the planet is separated as widely as possible
from the star. It’s awfully close to the star. It could just be too close? It’s possible.
We want fairly young stars so that the planets are still bright from their residual heat
of formation. Image processing sequence complete, awaiting instructions. And our goal, long-term,
is to observe about 150 to 200 stars and start And start to really characterize these exoplanet systems
for the first time. All right, so here’s the first image of the star. We collect 32
different images all simultaneously, but each image is at a slightly different wavelength
of light. What we can then do is make a movie of these things. A movie not in time but in
color. And what you see as you go from short wavelengths to long wavelengths is speckles
radiate outward from where the star is. A real planet or object will stay stationary
in those images. Do you see it? Yeah, there’s something right here. Yup. So, it’s clearly
not moving with the speckles. Once you’ve got lots of data like this you can see your
little planet. But you can also measure how bright it is at each wavelength, and that’s
the spectrum of the planet that allows you to determine the chemical composition of it.
So if you see a dip somewhere at a particular wavelength, you can identify what molecule
caused that because molecules absorb at very specific well known and well cataloged wavelengths
of light. Yeah, I think the seeing is not bad, actually. So one of the high points of
Project 1640 so far has been our observation of the planetary system with the romantic
name of HR 8799. What we’re able to do is take a snapshot showing all four planets at
the same time, and in each case be able to get a spectrum of all the planets and start
to be able to do the characterization. And And our goal is to be able to repeat that many
times over, finding new systems, characterizing them, and start to build up many, many family
portraits of these new exoplanet systems. Alright, why don’t you bump it up to three?
So, what do you have to do, add one more? Ultimately, the kind of research that we’re
doing is a precursor to looking for planets similar to Earth. Perhaps ones the even support
life. The question of whether life exists outside our solar system is so compelling
that we’ll never stop searching until we’ve found an answer. But in the meantime we have
a lot of worlds to study.