If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains ***.kastatic.org** and ***.kasandbox.org** are unblocked.

Main content

Current time:0:00Total duration:5:04

In the last couple of videos
we saw that we can describe a curves by a position
vector-valued function. And in very general terms, it
would be the x position as a function of time times
the unit vector in the horizontal direction. Plus the y position as a
function of time times the unit victor in the
vertical direction. And this will essentially
describe this-- though, if you can imagine a particle and
let's say the parameter t represents time. It'll describe where the
particle is at any given time. And if we wanted a particular
curve we can say, well, this only applies for some curve--
we're dealing, it's r of t. And it's only applicable
between t being greater than a and less than b. And you know, that would
describe some curve in two dimensions. Just me just draw it here. This is all a review of
really, the last two videos. So this curve, it might look
something like that where this is where t is equal to a. That's where t is equal to b. And so r of a will be this
vector right here that ends at that point. And then as t or if you can
imagine the parameter being time, it doesn't have to be
time, but that's a convenient one to visualize. Each corresponding as t gets
larger and larger, we're just going to different-- we're
specifying different points on the path. We saw that two videos ago. And in the last video we
thought about, well, what does it mean to take the derivative
of a vector-valued function? And we came up with this idea
that-- and it wasn't an idea, we actually showed
it to be true. We came up with a
definition really. That the derivative-- I could
call it r prime of t-- and it's going to be a vector. The derivative of a
vector-valued function is once again going to be a derivative. But it was equal to-- the way
we defined it-- x prime of t times i plus y prime
of t times j. Or another way to write that
and I'll just write all the different ways just so
you get familiar with-- dr/dt is equal to dx/dt. This is just a
standard derivative. x of t is a scalar function. So this is a standard
derivative times i plus dy/dt times j. And if we wanted to think about
the differential, one thing that we can think about-- and
whenever I do the math for the differential it's a
little bit hand wavy. I'm not being very rigorous. But if you imagine multiplying
both sides of the equation by a very small dt or this exact dt,
you would get dr is equal to-- I'll just leave it like this. dx/dt times dt. I could make these cancel
out, but I'll just write it like this first. Times the unit vector i
plus dy/dt times dt. Times the unit vector j. Or we could rewrite this. And I'm just rewriting it in
all of the different ways that one can rewrite it. You could also write this as dr
is equal to x prime of t dt times the unit vector i. So this was x prime of t dt. This is x prime of t right
there times the unit vector i. Plus y prime of t. That's just that right there. Times dt. Times the unit vector j. And just to, I guess, complete
the trifecta, the other way that we could write this is
that dr is equal to-- if we just allowed these to cancel
out, then we get is equal to dx times i plus dy
times dy y times j. And that actually makes a
lot of intuitive sense. That if I look at any dr,
so let's say I look at the change between this
vector and this vector. Let's say the super small
change right there, that is our dr, and it's made up of-- it's
our dx, our change in x is that right there. You can imagine it's that right
there times-- but we're vectorizing it by multiplying
it by the unit vector in the horizontal direction. Plus dy times the unit vector
in the vertical direction. So when you multiply this
distance times the unit vector, you're essentially
getting this vector. And when you multiply this
guy-- and actually our change in y here is negative--
you're going to get this vector right here. So when you add those together
you'll get your change in your actual position vector. So that was all a little
bit of background. And this might be somewhat
useful-- a future video from now. Actually, I'm going to leave it
there because really I just wanted to introduce this
notation and get you familiar with it. In the next video, what I'm
going to do is give you a little bit more intuition
for what exactly does this thing mean? And how does it change
depending on different parameterizations. And I'll do it with two
different parameterizations for the same curve.