If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Transforming exponential graphs

Given the graph of y=2ˣ, Sal graphs y=2⁻ˣ-5, which is a horizontal reflection and shift of y=2ˣ.

Want to join the conversation?

  • leafers ultimate style avatar for user alexanderjohn.peralta
    I'm a bit confused here..because 2^2=4 yes BUT 2^-2=1/4 Or perhaps I'm just not understanding this problem fully.. Please help out.
    (42 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user Ehden
      What you just said, is what Sal graphed!

      With a x value of -2, the y value becomes 4.
      2^-(-2) = 2^(2) = 4
      hence the coordinate, (-2, 4)

      With a x value of 2, the y value is 1/4, or 0.25.
      2^-(2) = 2^-2 = 1/4
      the coordinate is (2, 1/4).
      (45 votes)
  • leaf orange style avatar for user YanSu
    How did Sal know that -5 was going to be the horizontal asymptote, why not the vertical one?
    (5 votes)
    Default Khan Academy avatar avatar for user
    • duskpin sapling style avatar for user Vu
      Because we know the graph of y=2^x has a horizontal asymptote as y=0
      The graph y=2^(-x) reflects y=2^x over the y-axis
      y=2^(-x)-5, the -5 is the vertical shift, so it moves the graph 5 units down. Essentially, it moves the horizontal asymptote 5 units down as well.
      (12 votes)
  • spunky sam orange style avatar for user Elder Fauth
    Anyone have any idea about what "asymptote" means at ?
    (5 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user Chris Offner
    I think the explanation isn't very helpful here... At , Sal says "Any input we now put into x, we now take the negative of it, so if I input a 2, it's like taking the opposite of the 2 and then inputting that into 2^x." - and then he immediately goes "So it's like we're flipping the graph over the y-axis."

    I feel like that's quite a mental jump that isn't at all immediately intuitive to me (and it appears others as well, judging from the comments).

    2^(-2) = 1/4 and if we set y to 4, we get this at 4 = 2^-(-2) = 2^(2).

    So while I can see numerically that we're flipping the graph horizontally, Sal's explanation isn't intuitive to me at all here, and seems to be making too big a leap.
    (6 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user Mar Mario
    why is not the value of y = 1/4 ,since the exponent is = -2
    (2 votes)
    Default Khan Academy avatar avatar for user
  • male robot johnny style avatar for user Mohamed Ibrahim
    Is mathematics 3 a high school level or university ?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user Ghassan O. Najjar
    How can i do this algebraically?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user su
    How did one get the equation for exponential functions from f(x) = a(k(x-d)) + c to f(x)= a ^k(x-d) + c?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • mr pants purple style avatar for user Gilbert
    Is Mathematics III apart of Algebra?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • starky tree style avatar for user imamulhaq
    The equation a(b)^2+c is the original exponential equation. can someone list all the possible changes there are.
    ex: a is negative so the graph will transform to.......
    ex: b is less than 1 so.......
    ex: c is 1 so..............
    (1 vote)
    Default Khan Academy avatar avatar for user

Video transcript

- [Voiceover] We're told the graph of y equals two to the x is shown below, alright. Which of the following is the graph of y equals two to the negative x minus five? So there's two changes here. Instead of two to the x, we have two to the negative x and then, we're not leaving that alone, we, then, subtract five. So let's take 'em step by step. So let's first think about what y equals two to the negative x would look like. Well, any input we now put into an x, we're now going to take the negative of. So if I input a two, it's like taking the opposite of the two and then, inputting that into two to the x. And so, what we're essentially going to do is flip this graph over the y-axis. So, here we have the point two comma four. Over here, we're going to have the point negative two comma four. When x is zero, they're going to give us the same value. So they're both going to have the same y-intercept. And so are graph is going to look like, our graph is going to look something like, this. They're going to be mirror images flipped around the y-axis. So, it's going to look like that. That is the graph of y is equal to two to the negative x. And then we have to worry about the subtracting five from it. Well, that's, you're subtracting five from your final y-value so that's going to work. You're subtracting five to get your y-value now, where your y-value is going to be five lower, is I guess the best way to say it, so this is going to shift the graph down by five. So instead of having the y-intercept there, it's going to be five lower. One, two, one, each hash mark is two so this is one, two, three, four, five, is going to be right over there. So shift down by five, two, four, five. It's going to look like that. And the asymptote, instead of the asymptote, going towards y equals zero, the asymptote is going to be at y is equal to negative five. So the asymptote is going to be y equals negative five. So it should look something like, something like what I am drawing right now. Something like, something like that. So now we can look at which choices. So this should be the graph of y equals two to the negative x minus five. So let's see which of these choices depict that. So this first choice actually seems to be spot-on. It's exactly what we drew. Well, we can look at the other ones, just in case. Well, this is, this looks like, what did they do over here? Looks like they, instead of flipping over the y-axis, they took the, they flipped over the x-axis and then they shifted down, so that's not right. Here it looks like they got what we got but they flipped it over the x-axis. And this looks like they flipped it over the y-axis but then they shifted, instead of shifting down by five, it looks like they shifted to the left by five. So we should feel pretty good especially 'cause we essentially drew this before even looking at the choice.