If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Subtracting mixed numbers with regrouping (unlike denominators)

To subtract mixed numbers, first align the whole numbers and fractions so they can be subtracted separately. If the fractions have different denominators, find a common denominator and convert them accordingly. If the fraction on the bottom is larger, regroup by borrowing from the whole number on top. This will allow you to complete the subtraction.

Want to join the conversation?

  • orange juice squid orange style avatar for user Ashley Ramos
    how did he suddenly change from only having 4/9 to adding 4/9 + 9/9? Where did the 9/9 fraction come from? It's a bit confusing.
    (21 votes)
    Default Khan Academy avatar avatar for user
  • starky tree style avatar for user mariah
    how did you turn the 2/3 into 6/9?
    (0 votes)
    Default Khan Academy avatar avatar for user
    • leafers ultimate style avatar for user gamal82
      You can always multiply by 1 and get the same (equivalent) thing. He multiplied by 3/3 which is like a nickname for 1. Multiplying the tops (2*3=6) and the bottoms(3*3=9). The bottoms(denominators) is why we chose the 3/3 version of 1 in the first place. That was the way to get common denominator.
      (6 votes)
  • blobby green style avatar for user Khan drives me insane
    i need a staple so i could staple my staple onto a staple, so i drove to staples to get a staple to staple my staple, so i asked the worker at staples, named mable if they had any staples to staple my staple onto a staple, mabel from staples said she had no staples to staple my staple, so i sat down sad on the ground at staples to look for a free staple until mabel from staples came up to me with a bagel, i looked at mabel from staples and took the bagel and said thank you mabel from staples but then i got a flash back of me and my ex- bestie of us eating bagels outside of a staples pouring maple on our bagles out side of staples! so i ran to my house outside of staples with my bagel with the memory of me pouring maple on my bagel, as soon as i got home i dropped my bagel on the ground and fell, until.. suddenly.. I FOUND A STAPLE TO STAPLE MY STAPLE so i sat down on a chair and at my bagel with maple besides my staple. but then my staple was gone, and i ended up eating my staple. then i died. The end. :)
    (5 votes)
    Default Khan Academy avatar avatar for user
  • primosaur ultimate style avatar for user james
    is there something that can help me understand better?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • aqualine ultimate style avatar for user nbridges727
    Can you just use knowledge in needing to regroup and not cross out the number, but re-write the number?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • mr pants teal style avatar for user Asksquestions
    why do you need to simplify your answer?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby blue style avatar for user BubbleGum&SugarPlum
    What if you need to be simplified? I still don't get simplifying fractions with whole numbers.
    (1 vote)
    Default Khan Academy avatar avatar for user
    • hopper jumping style avatar for user Polaris
      At the end of the problem, if your answer can be simplified, do it!
      For example, if you have 5 6/12 , you can automatically see that the "6/12" can be simplified down to 1/2. You don't need to do anything to the 5 because you never simplify the whole number. Your final answer would be 5 1/2
      Did this help?
      (6 votes)
  • blobby blue style avatar for user MaDdOx🥴💊
    [Voiceover] So we have the expression 17 4/9 minus 12 and 2/3. And I encourage to pause the video and see if you can figure out what this is. So now let's work through it. So what I'm going to do is I'm going to rewrite these mixed numbers. So I'm going to write this as 17 and 4/9 minus 12 and 2/3. I'm going to write the 12 right under the 17, and I'm going to write the 2/3 right under the 4/9. Let me make it very clear, we are subtracting 12 and 2/3 from 17 and 4/9. So the first thing that we might want to do is we could look at the fraction parts and we might want to start subtracting until we see, look, we have different denominators here. We have ninths and we have thirds. So the first thing we'd want to do is let's get to a common denominator, and a good common denominator would be the least common multiple of nine and three. Well, what's that going to be? Well to think about that, I like to start with a larger number, nine. And say, well, is that divisible by three? Well, yes, it is divisible by three. It is divisible by the other denominator, so this actually is the least common multiple. If it wasn't, I would keep taking higher and higher multiples of 9. I would go to 18 and then I would go to 27, and I would keep going until I found one that's divisible by three. But I didn't have to do that because nine is divisible by three. So I can rewrite both of these fraction parts in terms of ninths. Now the one on top already is written in terms of ninths, so I can just rewrite that. 17 and 4/9. And the one on the bottom, I can write as 12 and some number of ninths. So 2/3 is how many ninths? Well, to go from thirds to ninths I had to multiply by three, had to multiply by three, so the numerator, I need to multiply by three as well. Two times three is six. 2/3 is the same thing as 6/9. And now I can try to subtract. But even here, when I try to subtract, I have a larger fraction down here that I'm trying to subtract from a smaller one. I have 4/9 minus 6/9. So what can I do? Well, be answer is I can regroup. I can take a whole from the 17. Let me do that. So if I take a whole from the 17, that's going to become 16, and then that whole that I just took from, I guess you could say the whole number place, I can add it to the fraction. Well, a whole is just going to be 9/9. So all I did was I regrouped here. I took 9/9 from 17. 9/9 is one, so I took 9/9 from 17, I'm left with 16, and then I regrouped them and I added them to the fractions place, as one way to think about it. Well, what's 4/9 plus 9/9? Well, that's going to be 13/9. So this right over here is 13/9. 13/9. It's a very strange way to write it, but 17 and 4/9 is the same thing as 16 and 13/9, because notice, this is greater than one. This is the same thing as one and 4/9. One and 4/9 plus 16 is going to be 17 and 4/9. Now why did I do all of this? Well 13/9 is larger than 6/9, so I can subtract. What's 13/9 minus 6/9 going to be? Well, 13 of something, in this case, ninths, minus six of that same something is going to be 7/9. Seven, let me write that in a neutral color. So that's going to be 7/9. 13/9 minus 6/9 is 7/9. And then I can look over in the whole number place. All I have left a 16 here. 16 minus 12 is four, and I'm done. 17 and 4/9 minus 12 and 2/3 is equal to four and 7/9.
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user alexandra oviedo
    Why can we put it as a negative? (4/9 - 6/9)= -2/9 ?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • starky sapling style avatar for user Michaelr.Renaud
    When you subtract 1 3/4 and 3 2/4, how do you subtract the whole numbers?
    (3 votes)
    Default Khan Academy avatar avatar for user

Video transcript

- [Voiceover] So we have the expression 17 4/9 minus 12 and 2/3. And I encourage to pause the video and see if you can figure out what this is. So now let's work through it. So what I'm going to do is I'm going to rewrite these mixed numbers. So I'm going to write this as 17 and 4/9 minus 12 and 2/3. I'm going to write the 12 right under the 17, and I'm going to write the 2/3 right under the 4/9. Let me make it very clear, we are subtracting 12 and 2/3 from 17 and 4/9. So the first thing that we might want to do is we could look at the fraction parts and we might want to start subtracting until we see, look, we have different denominators here. We have ninths and we have thirds. So the first thing we'd want to do is let's get to a common denominator, and a good common denominator would be the least common multiple of nine and three. Well, what's that going to be? Well to think about that, I like to start with a larger number, nine. And say, well, is that divisible by three? Well, yes, it is divisible by three. It is divisible by the other denominator, so this actually is the least common multiple. If it wasn't, I would keep taking higher and higher multiples of 9. I would go to 18 and then I would go to 27, and I would keep going until I found one that's divisible by three. But I didn't have to do that because nine is divisible by three. So I can rewrite both of these fraction parts in terms of ninths. Now the one on top already is written in terms of ninths, so I can just rewrite that. 17 and 4/9. And the one on the bottom, I can write as 12 and some number of ninths. So 2/3 is how many ninths? Well, to go from thirds to ninths I had to multiply by three, had to multiply by three, so the numerator, I need to multiply by three as well. Two times three is six. 2/3 is the same thing as 6/9. And now I can try to subtract. But even here, when I try to subtract, I have a larger fraction down here that I'm trying to subtract from a smaller one. I have 4/9 minus 6/9. So what can I do? Well, be answer is I can regroup. I can take a whole from the 17. Let me do that. So if I take a whole from the 17, that's going to become 16, and then that whole that I just took from, I guess you could say the whole number place, I can add it to the fraction. Well, a whole is just going to be 9/9. So all I did was I regrouped here. I took 9/9 from 17. 9/9 is one, so I took 9/9 from 17, I'm left with 16, and then I regrouped them and I added them to the fractions place, as one way to think about it. Well, what's 4/9 plus 9/9? Well, that's going to be 13/9. So this right over here is 13/9. 13/9. It's a very strange way to write it, but 17 and 4/9 is the same thing as 16 and 13/9, because notice, this is greater than one. This is the same thing as one and 4/9. One and 4/9 plus 16 is going to be 17 and 4/9. Now why did I do all of this? Well 13/9 is larger than 6/9, so I can subtract. What's 13/9 minus 6/9 going to be? Well, 13 of something, in this case, ninths, minus six of that same something is going to be 7/9. Seven, let me write that in a neutral color. So that's going to be 7/9. 13/9 minus 6/9 is 7/9. And then I can look over in the whole number place. All I have left a 16 here. 16 minus 12 is four, and I'm done. 17 and 4/9 minus 12 and 2/3 is equal to four and 7/9.