Main content

### Course: MAP Recommended Practice > Unit 34

Lesson 9: Adding decimals intro- Estimating decimal addition
- Estimating with adding decimals
- Introduction to adding decimals: tenths
- Adding decimals
- Add decimals visually
- Adding decimals < 1 (tenths)
- Adding decimals with ones and tenths parts
- Adding decimals and whole numbers (tenths)
- Adding decimals (tenths)

© 2024 Khan AcademyTerms of usePrivacy PolicyCookie Notice

# Adding decimals with ones and tenths parts

Learn how to add decimals, specifically to the tenths. Practice adding whole numbers first, then adding the decimal parts. Learn the concept of carrying over in decimal addition.

## Want to join the conversation?

- How would you do that with 3 + 4.5?(38 votes)
- 3 = 3 ones. 4 = 4 ones. 3 + 4.5 = 7.5(49 votes)

- Here is a simple way of adding decimals. (Like his example)

Let's say you have 26.52+67.26

First, you could line them up if you wanted to make it easier. We will move across the digits.

2+6 = 8 (9, with change.)

6+7=13. Now add the 1 to the 8. ^

Now we have 93. Now add the decimals. 0.5 + 0.2 = 0.7 0.02+ 0.06 = 0.08

Therefore, 93.78.(33 votes)- that was helpful?(0 votes)

- why is there people from 50 years ago(24 votes)
- I have a question? If you add 1.7 + 9 would it be 9.7(12 votes)
- Close... 1.7 + 9 would be 10.7 because 1 + 9 is 10, and 10 + 0.7 is 10.7.(18 votes)

- if you add 6.3 and 2.9 do you get 10.0 or do you get 9.2.I don't understand well(8 votes)
- Carefully think about place values and see if that helps you make better sense of what is going on. 6.3 is 6 ones and 3 tenths. 2.9 is 2 ones and 9 tenths. We can add the like terms together. 6 ones and 2 ones gives us 8 ones. 3 tenths and 9 tenths gives us 12 tenths. Now we're left with 8 ones and 12 tenths. To add these together, we have to make them have the same unit. If we have 12 tenths, we also have 1.2 ones. 8 ones plus 1.2 ones gives us 9.2 ones. You could also do this by changing them all to tenths. 6.3 is 63 tenths. 2.9 is 29 tenths. 63 + 29 = 92. The answer is 92 tenths, or 9.2. I hope this helps. If you want help understanding why it isn't 10.0, please type out your work and we can analyze the error.

I hope this helps.(18 votes)

- I'm confused there's so many steps. can somebody explain this to me?(4 votes)
- If I were to break it down, here it is:

For example, let's take**5.5 + 6.8**. We write it like this:

+5.5

+6.8

-----

Here, we can solve it normally.`1`

+5.5

+6.8

-----

12.3

I hope this helped!(7 votes)

- can't you just forget the decimal point and then add... once you get the answer you just put the decimal point back in line?

like 1.2 becomes 12 and 4.5 becomes 45

12+45= 57

57= 5.7

so yea.(7 votes) - how do you do this i dont get how a 1.2 x 1.2 ma55e56re5erfdcvgyxtrsdcfsgvjxiwy7sdrcgvhwsx(7 votes)
- 1x1=1

0.2x0.2=0.4

1+0.4=1.4(0 votes)

- on my paper i blank out here im getting 100's on the lessons(6 votes)
- I don't understand why you would completely work around and avoid the simple time saving formula of adding the tenths, carrying if more than ten tenths. For someone who understands numbers and place values well but simply can't remember the process of working problems on paper this is disappointing. You did mention getting into carrying later forgive me if I am being impatient with your process of teaching. Can I expect any form of refresher on working problems on paper which is a reliable way of solving problems?(6 votes)

## Video transcript

- [Instructor] Last video, we
got a little bit of practice adding decimals that involved tenths. Now let's do slightly
more complicated examples. So let's say we wanna add four to 5.7, or we could read the second
number as five and 7/10. Pause this video, and
see if you can do this. The way that my brain
tries to tackle this is, I try to separate the whole
numbers from the tenths, so you can view this
as being the same thing as four plus five plus 7/10. All I did here is I broke
up the five and 7/10 into five plus 7/10, and the
reason why my brain likes to do that is because I can
then say okay four plus five, that's just going to be equal to nine, and then I just have to add the 7/10. So it's gonna be nine and
7/10 which I can rewrite, this is going to be
equal to nine and 7/10. Nine and 7/10 I could write as 9.7. Even though in future videos
we're going to learn other ways of adding decimals, especially larger, more complicated decimals, this is still how my brain adds four plus 5.7. Especially if I need to do it in my head. I say okay, four plus five
is nine, and then I have that 7/10, so it's going
to be nine and 7/10 or 9.7. Now let's do another example where both numbers involve a decimal. Let's say I want to add 6.3 to 7.4. So 6.3 plus 7.4. Once again, pause this video and try to work through it on your own. Well my brain does it the same way. I break up the whole
numbers and the decimals. Once again, there's many
different ways of adding decimals, but this is just one
way that seems to work. Especially for decimals like this. So we could view this as six and 3/10, so I'm breaking up the
6.3, the six and 3/10, into six plus 3/10 plus seven and 4/10. Seven plus 4/10, and then
this you can view as, so you could view this as six
plus seven, six plus seven, plus, plus 3/10, plus 3/10 plus 4/10, plus 4/10. If you add the ones here, you
have six ones and seven ones, that's going to be equal to
13, and then 3/10 and 4/10. If you have three of something
and then you add four of that, that's going to be 7/10, and we would write 7/10 as 0.7. Seven in the tenths place. Then what's 13 plus 7/10? Well that is going to be 13. This is going to be equal to 13.7. 13.7, and we are done. Let me do one more example
that will get a little bit, a little bit more involved. So let me delete all of these. Let's say I wanted to add 6.3 to, and I'm gonna add that to 2 point, 2.9. Pause the video and see if
you can figure this out. Let's do the same thing. This is going to be six
and 3/10, so six plus 3/10, plus two, plus 9/10, or you could view this as six plus two, so I'll put all my ones together. Six plus two, and then I'll
put my tenths together, plus 3/10, plus 3/10. Plus 9/10, plus 9/10. And so the six plus two
is pretty straightforward. That is going to be equal to eight. Now what's 3/10 plus 9/10? This is gonna get a
little bit interesting. 3/10 plus 9/10, and I could write it out. I could say this is three
tenths, this is nine tenths. Well 3/10 plus 9/10 is equal to 12/10. This is going to be 12/10, but how do we write 12/10 as a number? Well 12/10 is the same
thing as 10/10 plus 2/10. The reason why I broke it up
this way is 10/10 is one whole, so this is going to be equal to one. When you add these two
together, it's 12/10 which is the same thing as one and 2/10. So one plus 2/10 or, well let
me just write it that way. This I can rewrite as plus one plus 2/10, and then I think you
see where this is going. I could add the eight and the
one, and I get nine and 2/10. So nine and 2/10. So it's going to be 9.2. The reason why this one was a
little bit more interesting is I added the ones, I got
six plus two is eight, but then when I added the tenths, I got something that
was more than a whole. I got 12/10 which is one and 2/10, and so I added one more whole
to the eight to get nine, and then I had those 2/10 leftover. This is really good to understand because in the future when
you're adding decimals, you'll be doing stuff like
carrying from one place to another, and this is
essentially what we did. When we added the 3/10 plus
the 9/10, we got 12/10, and so we added an extra whole, and then we had the leftover 2/10. Hopefully, that makes some sense.