If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Midpoint sums

Approximating area under a curve using rectangle where the heights are the value of the function at the midpoint of each interval.

Want to join the conversation?

  • piceratops ultimate style avatar for user Joshua Ogunmefun
    Which type is the most accurate. Is it the midpoint sum or the left or right Riemann sum?
    (18 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Ivy Lin
    At , , and , why do the rectangle heights change?
    (4 votes)
    Default Khan Academy avatar avatar for user
    • starky sapling style avatar for user Neha Sahota
      The heights are changing as different approximation methods are being used. At midpoint formula is being used, then left Riemann sum approximation, and finally right Riemann sum approximation (respectively). The instructor is demonstrating how to solve with each different kind of approximation.
      (9 votes)
  • leaf green style avatar for user !!
    In this video, how is Sal getting the height of each of his rectangles?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user shubhangibansal999
    At , Sal defines the height of all three rectangles- the first two's height as 5/4 and the third ones as 13/4. What login is behind taking such heights to find the area by mid point method?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • cacteye blue style avatar for user Jerry Nilsson
      Let one of these rectangles have its left endpoint at 𝑥 = 𝑎 and its right endpoint at 𝑥 = 𝑏, which means that its midpoint will be at 𝑥 = (𝑎 + 𝑏)∕2.

      Within the interval [𝑎, 𝑏] it is much more common for a function 𝑓(𝑥) to be strictly increasing/decreasing rather than not, which means that its lowest and highest values within that interval will most likely be 𝑓(𝑎) and 𝑓(𝑏), while 𝑓((𝑎 + 𝑏)∕2) is somewhere in between.
      Therefore, a midpoint sum is more or less guaranteed to be a better approximation of the area under the curve than a left- or righthand sum.
      (4 votes)
  • leaf green style avatar for user Jessie Head
    for midpoint, do you multiply the heights of each rectangle by the width of each rectangle? or did he not do that because the question states all the rectangles have equal widths?
    (4 votes)
    Default Khan Academy avatar avatar for user
    • blobby green style avatar for user Matthew439
      I hope you guys have figured it out in the last 4 years but I'll post an answer for any others who have the same questions nowadays. Usually, you do have to multiply the height of the rectangles by the widths. When the widths are all equal, you can add up the heights and then multiply by the width once, since each number is being multiplied by the same width. (ex. ab + ac + ad = a(b + c + d)). In this video, however, the widths are all equal to 1, so he doesn't need to multiply.
      (1 vote)
  • blobby green style avatar for user Madison Blue
    What is the summation notation for midpoint sums?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • female robot grace style avatar for user loumast17
      Assuming a is the start, b is the end and t is the number of rectangles in between, Sum from x=0 to t-1 of (b-a)/t*f(a+(b-a)/(2t)+x(b-a)/t)

      That may be a little complicated but if you break it up (b-a)/t is the length of each rectangle and the function is the height at a certain point, so we needed to get what each midpoint would be. Also, we go to t-1 instead of t because the first rectangle's midpoint is going to be x=0, the second midpoint is x=1, and we do this all the way down to the t-th midpoint being x=t-1. Hopefully that makes sense.

      To find the midpoint we want to start at a, then go to the midpoint of the first rectangle, which is half the length so plus (b-a)/t divided by 2 which leads to (b-a)/(2t) and then finally we want to add another rectangle length to get to the next midpoint, and we want to add one midpoint length over and over again for as many rectangles there are and add them up. so x*(b-a)/t.

      I really really hope that made sense. Let me know if it didn't and I can try a different way of explaining.
      (2 votes)
  • piceratops seed style avatar for user toukaandkaneki12347890
    The Fundamental Theorem of Algebra states that a polynomial will cross the x-axis n times for n equaling the degree of the highest degree term. However, x^2 + 1 does not cross the x-axis. Please explain!
    (1 vote)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Alexander Wu
      This is the FTA: every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n complex roots. There are n roots, but not all roots are necessarily real, so the polynomial may not cross the x axis. In fact, the roots of x^2 + 1 are i and -i.
      (6 votes)
  • aqualine ultimate style avatar for user Nightshde Silverserpent
    Couldn't you take the left sum, subtract the right sum, divide the difference by two, and then add that difference to the underestimation or subtract it from the overestimation to get the exact value?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Caleb
    Does the number of rectangles affect how accurate the approximation is more than the midpoint method itself or is it the other way around?
    In other words, if I were to compare a left-side or right-side approximation with more rectangles with a midpoint approximation with fewer rectangles, which would be more accurate?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • stelly green style avatar for user The #1 Pokemon Proponent
      The number of rectangles is always the most important factor, whatever the method is used. I am not sure how to answer your second question without specific data like the actual function, the number of rectangles used and the bounds.

      As a footnote, later on we will be able to calc. exact areas by taking an extremely large amount of rectangles (effectively, a limit as number of rect. tends to infinity.
      (1 vote)
  • scuttlebug green style avatar for user Yasmine Mills
    -1^2+1=0. I am confused how 2 is
    (1 vote)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user cossine
      You are correct -1^2 + 1 =0, however that is not the calculation the video is performing.

      The calculation perform is (-1)^2 + 1 which equal 2.

      What is going on with -1^2 + 1 is the exponentiation is performed first. This leaves us with -1 + 1 = 0. This is because going by order of operations unary operator i.e. negative sign is applied after exponentiation

      BENDMAS:
      Bracket
      Exponentiation
      Negative sign
      Divison/Multiplication # note equal hierarchy
      Addition/Subtraction # note equal hierarchy
      (1 vote)

Video transcript

- [Instructor] What we wanna do in this video is get an understanding of how we can approximate the area under a curve. And for the sake of an example, we'll use the curve y is equal to x squared plus one. And let's think about the area under this curve, above the x-axis, from x equals negative one to x equals two. So that would be this area right over here. And there's many ways that I could tackle this, but what I'm going to do is I'm gonna break up this interval into three equal sections that are really the bases of rectangles. And then we're gonna think about the different ways to define the heights of those rectangles. So once again, I'm going to approximate using three rectangles of equal width. And then we'll think about the different ways that we can define the heights of the rectangles. So let's first define the heights of each rectangle by the value of the function at the midpoint. So we see that right over here. So let's just make sure that it actually makes sense to us. So if we look at our first rectangle right over here, actually let's just first appreciate, we have split up this x, we have split up the interval from x equals negative one to x equals two into three equal sections, and then each of them have a width of one. If we wanted a better approximation we could do more sections or more rectangles, but let's just see how we would compute this. Well the width of each of these is one, the height is based on the value of the function at the midpoint. The midpoint here is negative 1/2, the midpoint here is 1/2, the midpoint here is 3/2. And so this height is going to be negative 1/2 squared plus one. So negative 1/2 squared is 1/4 plus one, so that's 5/4. So the height here is 5/4. So you take 5/4 times one. This area is 5/4, let me write that down. So if we're doing the midpoint to define the height of each rectangle, this first one has an area of 5/4. Do it in a color you can see, five over four. The second one, same idea, 1/2 squared plus one is 5/4 times a width of one. So 5/4 there. So let me add that. Plus 5/4. And then this third rectangle, what's its height? Well we're gonna take the height at the midpoint, so 3/2 squared is 9/4 plus one, which is the same thing as 13/4. So it has a height of 13/4, and then a width of one, so times one, which would just give us 13/4. So plus 13/4, which would give us 23 over four which is the same thing as 5 3/4. And so this is often known as a midpoint approximation where we're using the midpoint of each interval to define the height of our rectangle. But this isn't the only way to do it. We could look at the left endpoint or the right endpoint, and we do that in other videos. And if we wanna do it just for kicks here, let's just do that really fast. So if we wanna look at the left endpoints of our interval, well here our left endpoint is negative one, negative one squared plus one is two, two times one gives us two. And then here the left part of this interval is x equals zero, zero squared plus one is one, one times one is one. And now here our left endpoint is one, one squared plus one is equal to two, times one, our base, is equal to two. So here we have a situation where we take our left endpoints, where it is equal to two plus one plus two or five. Well we can also look at the right endpoints of our intervals. So this first rectangle here, clearly under approximating the area over this first interval. Its right endpoint is zero, zero squared plus one is one, so a height of one, width of one, has an area of one. Second rectangle here, it has a height of, look at our right endpoint, one squared plus one is two, times our width of one, well that's just gonna give us two. And then here our right endpoint is two, squared plus one is five, times our width of one, gives us five. So in this case we get, when we look at our right endpoints of our intervals, we get one plus two plus five is equal to eight. And eyeballing this, it looks like we're definitely over counting more than under counting, and so this looks like an over approximation. So the whole idea here's just to appreciate how we can compute these approximations using rectangles. And as you can imagine, if we added more rectangles that had skinnier and skinnier bases but still covered the interval from x equals negative one to x equals two, we would get better and better approximations of the true area.