If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains ***.kastatic.org** and ***.kasandbox.org** are unblocked.

Main content

Current time:0:00Total duration:7:27

AP.CALC:

FUN‑6 (EU)

, FUN‑6.B (LO)

, FUN‑6.C (LO)

- [Voiceover] Let's now
take the definite integral from two to four of six plus x squared over x to the third power dx. At first this might seem pretty daunting. I have this rational expression. But if we just rewrite this,
it might jump out at you how this could be a little bit simpler. So this is equal to the
integral from two to four of six over x to the third power plus x squared over x
to the third power dx. I just separated this numerator out. I just divided each of those
terms by x to the third power. And this I could rewrite. This is equal to the
integral from two to four of six x to the negative three power, that's that first term there. And x squared divided by x to the third, well that it going to be one over x. So plus one over x dx. Now this is going to be equal to, let's take the antiderivative
of the different parts and we're going to evaluate that at four and we're going to evaluate that at two. And we're going to find
the difference between the antiderivative valued
at four and at two. Now what is the antiderivative of six x to the negative three? Well, here, once again we can just use, we could use the power rule
for taking the antiderivative or it's the reverse of
the derivative power rule. We know that if we're taking the integral of x to the n dx, the antiderivative of that is going to be x to the n
plus one over n plus one. And if we were just taking
an indefinite integral there would be sum pluc C. The reason why we don't
put the plus Cs here is when you evaluate at
both bounds of integration, the C would cancel out
regardless of what it is. So we don't really think about the C much when we're taking definite integrals. But let's apply that to six x
to the negative third power. So it's going to be, we're going to take x to the negative three plus one. So it's x to the negative two. And so we're gonna divide
by negative two as well. And, of course, we had that
six out front from the get go. So that's the antiderivative of six x to the negative three power. And what's the
antiderivative of one over x? You might be tempted to use
the same idea right over here. You might be tempted to say, all right, well the antiderivative
of x to the negative one, which is the same thing as one over x would be equal to x to
the negative one plus one over negative one plus one. But what is negative one plus one? It is zero. So this doesn't fit this
property right over here. But lucky for us, there
is another property. And we went the other way when we were first taking derivatives of natural log functions. The antiderivative of one over
x or x to the negative one is equal to, sometimes
you'll see it written as natural log of x plus C. And sometimes and I
actually prefer this one, because you could actually
evaluate it for negative values, is to say the absolute value, the natural log of the
absolute value of x. And this is useful,
because this is defined for negative values, not
just positive values. The natural log of x is only defined for positive values of x, but when you take the absolute value, now it could be negative
or positive values of x. And it works, the derivative
of this is indeed one over x. Now it's not so relevant here, because our bounds of
integration are both positive. But if both of our bounds of
integration were negative, you could still do this
by just reminding yourself that this is a natural log
of absolute value of x. So this, we could say
is plus the natural log of the absolute value of x. It's not a bad habit to do it, and if everthing's positive, well, the absolute value of x is equal to x. And so what is this going to be equal to? This is equal to, let's
evaluate everything at four. And actually before I
even evaluate it at four, what's six divided by negative
two, that's negative three. So if we evaluate it at
four, it's going to be negative three over four squared. Four to the negative two
is one over four squared and then plus the natural log of the, we could say the absolute value of four, but the absolute value
of four is just four. So the natural log of four. And from that we're going to subtract everything evaluated at two. So let's do that. So if we evaluate it at two,
it's going to be negative three over two squared. So two to the negative two
is one over two squared, over two squared, plus the natural log of, the absolute value of positive two is, once again, it's just two. And so what does this give us? So, let's try to simplify it a little bit. So this is negative 3/16. We'll do that same color. So this is going to be equal to negative, negative, sorry, not negative 3/16, it's gotta be very careful, oh, sorry, yes, it is negative 3/16. For some reason my brain started thinking four to the third power. Negative 3/16 plus natural log of four. And then this right over here
is negative 3/4, negative 3/4, do that same color. This right over here is negative 3/4. We have this negative sign out front that we're going to have to distribute. So the negative of negative
3/4 is plus 3/4, plus 3/4, and then we're going to subtract, remember we're distributing
this negative sign, the natural log, the natural log of two. And what does this equal to? All right, so this is
going to be equal to, and I'm now going to
switch to a neutral color. So let's add these two terms that don't involve a natural log. And let's see, if we
have a common denominator three over four is the same
thing, that is the same thing as we multiply the numerator
and the denominator by four, that is 12 over 16. And so you have negative 3/16, negative 3/16 plus 12/16 will give you 9/16, 9/16. And then we're gonna have the ones that do involve the natural log. Natural log of four minus
the natural log of two. So we could write this plus
the natural log of four minus the natural log of two. And you might remember from
your logarithm properties that this over here,
this is the same thing as the natural log of four divided by two, this comes straight out of
your logarithm properties. And so this is going to
be the natural log of two, natural log of two. So, we deserve a little
bit of a drum roll now. This is all going to be equal to, this is going to be
equal to the natural log, nine over 16 plus the natural log of two, plus the natural log of two. And we are done.