We are surrounded by space. And that space contains lots of things. And these things have shapes. In geometry we are concerned with the nature of these shapes, how we define them, and what they teach us about the world at large--from math to architecture to biology to astronomy (and everything in between). Learning geometry is about more than just taking your medicine ("It's good for you!"), it's at the core of everything that exists--including you. Having said all that, some of the specific topics we'll cover include angles, intersecting lines, right triangles, perimeter, area, volume, circles, triangles, quadrilaterals, analytic geometry, and geometric constructions. Wow. That's a lot. To summarize: it's difficult to imagine any area of math that is more widely used than geometry.
Community Questions

Tools of geometry

Angles & intersecting lines

This topic continues our journey through the world of Euclid by helping us understand angles and how they can relate to each other.

Special properties and parts of triangles

You probably like triangles. You think they are useful. They show up a lot. What you'll see in this topic is that they are far more magical and mystical than you ever imagined!



In this topic you will learn about the most useful math concept for creating video game graphics: geometric transformations, specifically translations, rotations, reflections, and dilations. You will learn how to perform the transformations, and how to map one figure into another using these transformations.


Learn what it means for two figures to be congruent, and how to determine whether two figures are congruent or not. Use this immensely important concept to prove various geometric theorems about triangles and parallelograms.


Learn what it means for two figures to be similar, and how to determine whether two figures are similar or not. Use this concept to prove geometric theorems and solve some problems with polygons.

Right triangles and trigonometry

Triangles are not always right (although they are never wrong), but when they are it opens up an exciting world of possibilities. Not only are right triangles cool in their own right (pun intended), they are the basis of very important ideas in analytic geometry (the distance between two points in space) and trigonometry.


Explore, prove, and apply important properties of circles that have to do with things like arc length, radians, inscribed angles, and tangents.

Perimeter, area, and volume

A broad set of tutorials covering perimeter area and volume with and without algebra.

Analytic geometry

In analytic geometry, also known as coordinate geometry, we think about geometric objects on the coordinate plane. For example, we can see that opposite sides of a parallelogram are parallel by by writing a linear equation for each side and seeing that the slopes are the same.

Geometric constructions

We now have fancy computers to help us perfectly draw things, but have you ever wondered how people drew perfect circles or angle bisectors or perpendicular bisectors back in the day. Well this tutorial will have you doing just as your grandparents did (actually, a little different since you'll still be using a computer to draw circles and lines with a virtual compass and straightedge).


Special properties and parts of triangles

You probably like triangles. You think they are useful. They show up a lot. What you'll see in this topic is that they are far more magical and mystical than you ever imagined!
Community Questions
All content in “Special properties and parts of triangles”

Triangle inequality theorem

The triangle inequality theorem is, on some level, kind of simple. But, as you'll see as you go into high level mathematics, it is often used in fancy proofs. This tutorial introduces you to what it is and gives you some practice understanding the constraints on the dimensions of a triangle.

Perpendicular bisectors

In this tutorial, we study lines that are perpendicular to the sides of a triangle and divide them in two (perpendicular bisectors). As we'll prove, they intersect at a unique point called the cicumcenter (which, quite amazingly, is equidistant to the vertices). We can then create a circle (circumcircle) centered at this point that goes through all the vertices. This tutorial is the extension of the core narrative of the Geometry "course". After this, you might want to look at the tutorial on angle bisectors.

Angle bisectors

This tutorial experiments with lines that divide the angles of a triangle in two (angle bisectors). As we'll prove, all three angle bisectors actually intersect at one point called the incenter (amazing!). We'll also prove that this incenter is equidistant from the sides of the triangle (even more amazing!). This allows us to create a circle centered at the incenter that is tangent to the sides of the triangle (not surprisingly called the "incircle").

Medians & centroids

You've explored perpendicular bisectors and angle bisectors, but you're craving to study lines that intersect the vertices of a a triangle AND bisect the opposite sides. Well, you're in luck because that (medians) is what we are going to study in this tutorial. We'll prove here that the medians intersect at a unique point (amazing!) called the centroid and divide the triangle into six mini triangles of equal area (even more amazing!). The centroid also always happens to divide all the medians in segments with lengths at a 1:2 ration (stupendous!).


Ok. You knew triangles where cool, but you never imagined they were this cool! Well, this tutorial will take things even further. After perpendicular bisectors, angle bisector and medians, the only other thing (that I can think of) is a line that intersects a vertex and the opposite side (called an altitude). As we'll see, these are just as cool as the rest and, as you may have guessed, intersect at a unique point called the orthocenter (unbelievable!).

Bringing it all together

This tutorial brings together all of the major ideas in this topic. First, it starts off with a light-weight review of the various ideas in the topic. It then goes into a heavy-weight proof of a truly, truly, truly amazing idea. It was amazing enough that orthocenters, circumcenters, and centroids exist , but we'll see in the videos on Euler lines that they sit on the same line themselves (incenters must be feeling lonely)!!!!!!!