If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Determining tangent lines: angles

Solve two problems that apply properties of tangents to determine if a line is tangent to a circle.

Problem 1

Segment start overline, O, C, end overline is a radius of circle O.
A circle centered around point O. Segment O C is a radius of the circle. Point A lies outside the circle, and line A C is a line that could potentially be tangent to circle O. A line segment connects point A to point O. Line segment A O, line segment O C, and line A C create the triangle A O C. Angle A of triangle A O C is thirty-two degrees. Angle O of triangle A O C is fifty-eight degrees. Angle C of triangle A O C is unknown.
Note: Figure not necessarily drawn to scale.
Is line A, C, with, \overleftrightarrow, on top tangent to circle O?
Choose 1 answer:
Choose 1 answer:

Problem 2

Segment start overline, B, C, end overline is a diameter of circle O.
A circle centered around point O. Segment O C is a radius of the circle. Point A lies outside the circle, and line A C is a line that could potentially be tangent to circle O. A line segment connects point A to point B. Line segment A B, line segment B C, and line A C create the triangle A B C. Angle A of triangle A O C is fifty-one degrees. Angle B of triangle A B C is forty-nine degrees. Angle C of triangle A B C is unknown.
Note: Figure not necessarily drawn to scale.
Is line A, C, with, \overleftrightarrow, on top tangent to circle O?
Choose 1 answer:
Choose 1 answer:

Want to join the conversation?

  • piceratops sapling style avatar for user Jeiel  Damina
    In the second solution why isn't it a tangent of O when it intersects at one point C?
    (27 votes)
    Default Khan Academy avatar avatar for user
  • male robot hal style avatar for user RandomDad
    The first question answer is totally wired. If the reason of line AC to be tangent to O circle is because AC line perpendicular to OC line, then I can disprove that by shortening the length of OC line.
    The first answer is more reasonable to me.
    ​​
    (6 votes)
    Default Khan Academy avatar avatar for user
  • aqualine sapling style avatar for user Samantha Ann
    If right triangle are other 2 angles 45 degrees
    (0 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user khilar.sasmita
    How can we prove a perpendicular bisectors of chord of a circle passes through centre.
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user Katriana
      Do not up-vote this. It is incorrect, but the comment just below is correct.

      I think it is not necessarily true that a perpendicular bisector of a chord of a circle will always pass through the center. It could be to one side or another of the center. This article is about tangents, which must be perpendicular to the circle's radius at the point that it comes in contact with the circle.
      (4 votes)
  • blobby green style avatar for user Mary
    If a line is tangent to a circle, does that mean that the point of intersection between the line and the circle is also a right angle?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • leaf blue style avatar for user rickela.joseph
    how do you now that triangles in a circle are alternate if no sides where given ?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • sneak peak green style avatar for user Taliyah
    I have a pretest on lines and angles and I can't find nothing to help me understand it, I am so confused.
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user 346028
    What is an easy way to remember this if I am learning like three other things at a time
    (1 vote)
    Default Khan Academy avatar avatar for user
    • purple pi pink style avatar for user Charlie Auen
      When you're learning several things at once, it can also help to connect the new ideas to others that you already have. Did you ever use regular polygons with lots of sides to approximate the area or the perimeter of a circle? If you did, you drew lots of tangent lines to the circle, and you figured out the measurements of the polygon by drawing right triangles using the radius as one side of the triangle and sections of a tangent line as another side. So remembering that picture can help us remember that the line tangent to a circle at a point is at a right angle to the radius that touches the same point.
      You could also try watching the video Proof:
      Radius is perpendicular to tangent line
      . It shows you a way of convincing yourself that the tangent line must be perpendicular to the radius.
      (4 votes)
  • starky seedling style avatar for user JeremiahDEV
    In the second solution why isn't the tangent of O when it intersects at one point C?
    (0 votes)
    Default Khan Academy avatar avatar for user
  • leafers ultimate style avatar for user jayden.choong
    How do you know that a line is a tangent?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • hopper cool style avatar for user Seed Something
      It's Tangent if…
      • it intersects at only one point on the circumference,
      AND
      • it creates 90° angle with the radius
      , (therefore is perpendicular to the radius).

      Notice the reference image is a "not to scale figure", it only gives a semblance of the lines positions, so it is inaccurate, and only used for visual cues to line arrangements, not to indicate all the intersection points, not to estimate angles.

      So, we know both of these lines, (in these questions), pass through a point on the circumference, but we can't tell if that's the only point by just looking at an imprecise reference picture, so check to see if a 90° is made between line and radius.

      In these questions, only by doing the calculation can we know if the line meets the definition as Tangent.

      Tangent is to be both traits:
      single circumference intersect
      perpendicular with radius, (drawn from intersection point), therefore creates 90° angle

      ✯Never rely on a "Not to Scale Figure" to draw a conclusion, always check by calculating the given values.

      (ㆁωㆁ) Hope this helps.
      (3 votes)