Main content
Current time:0:00Total duration:2:42

Drawing a trapezoid on the coordinate plane example

Video transcript

- "Click on the graph to draw an isosceles trapezoid "with vertices at negative two comma eight "and negative four comma negative one. "Another vertex at three comma eight "and a base nine units long "that is parallel to the x-axis." All right, let's see if we can do this. So we could just start plotting these vertices. So negative two comma eight. X is negative two, y is eight. That's that point right over there. The next one is x is negative four, y is negative one. x is negative four, y is negative one and that's nice. They connect the dots for us. Then they say three comma eight. So three comma eight. It's gonna be right up here. Now I think when I click it, it's going to try to draw a line between this point and this point which isn't what we want. This is a trapezoid, an isosceles trapezoid. I actually want to connect three comma eight to this point right over here to negative two comma eight. So let me see what happens. Yep, yeah, that's not what I wanted to happen. So let me actually delete this. Let me delete here. I'm actually gonna plot this one first. Then I'm going to plot this one, then I'm going to plot this one and then I'm going to see where I need to put this other one. So let me delete all of these. We move these all to the trash. So move them all to the trash. And so let me start over. So I'm going to start, that looks like some type of a bug but let's see. Let's hopefully it still works. Let's plot three comma eight first. Three comma eight. That's that point. Then we're going to plot negative two comma eight. Negative two comma eight. This is the top of our isosceles trapezoid. It's nice to give us the length that has, the length of this top is five. And then, now you can do negative four comma negative one. Negative four comma negative one is this point right over here. All right, now this is looking like a trapezoid. And now a base nine units long that is parallel to the x-axis. So base, it's nine units long and it's parallel to the x-axis. We just have to move to the right, nine units. One, two, three, four, five, six, seven, eight, nine units. And then we just move back up. And it does look like we have got ourselves an isosceles trapezoid. What is an isosceles trapezoid mean? It means that these two sides, the non top or non bottom or non base sides are going to be equal. And we see that this side over here is equal to that and that this top is, you can kind of view, it's in the middle. That's one way to think about it. So I like this isosceles trapezoid. So let's check our answer. Make sure that we've drawn it right. Yeah, we did good.