Main content
Precalculus (Eureka Math/EngageNY)
Topic A: Lessons 1-6: Complex numbers review: Module 1: Complex numbers and transformationsTopic A: Lessons 7-8: Complex number division: Module 1: Complex numbers and transformationsTopic B: Lessons 9-12: Distance and midpoint of complex numbers: Module 1: Complex numbers and transformationsTopic B: Lesson 13: Trigonometry and complex numbers: Module 1: Complex numbers and transformationsTopic B: Lessons 14-17: Multiplying and dividing complex numbers in polar form: Module 1: Complex numbers and transformations
Topic C: Lessons 18-19: Exploiting the connection to trigonometry: Module 1: Complex numbers and transformationsTopic C: Lessons 21-23: Transforming vectors with matrices: Module 1: Complex numbers and transformationsTopic C: Lesson 24: Matrix notation encompasses new transformations!: Module 1: Complex numbers and transformationsTopic C: Lesson 25: Properties of matrix addition: Module 1: Complex numbers and transformationsTopic C: Lesson 25: Properties of matrix multiplication: Module 1: Complex numbers and transformationsTopic C: Lessons 26-30: Matrix inverses: Module 1: Complex numbers and transformations
Topic A: Networks and matrices: Module 2: Vectors and matricesTopic C: Systems of linear equations: Module 2: Vectors and matricesTopic D: Lessons 17-18: Vectors in the coordinate plane: Module 2: Vectors and matrices
Topic D: Lesson 19: Directed line segments and vectors: Module 2: Vectors and matricesTopic D: Lessons 20: Vectors and stone bridges: Module 2: Vectors and matricesTopic D: Lessons 23-24: Why are vectors useful?: Module 2: Vectors and matricesTopic E: First-person video games—projection matrices: Module 2: Vectors and matrices
Topic A: Lesson 1: Solutions to polynomial equations: Module 3: Rational and exponential functionsTopic A: Lessons 2-3: Roots of complex numbers: Module 3: Rational and exponential functionsTopic A: Lessons 4-5: The binomial theorem: Module 3: Rational and exponential functionsTopic A: Lessons 6-7: Ellipses: Module 3: Rational and exponential functionsTopic A: Lesson 8: Hyperbolas: Module 3: Rational and exponential functionsTopic A: Lesson 9: Volume and Cavalieri’s principle: Module 3: Rational and exponential functionsTopic B: Lessons 10-11: Simplifying rational expressions: Module 3: Rational and exponential functions
Topic B: Lessons 10-11: Multiplying & dividing rational expressions: Module 3: Rational and exponential functionsTopic B: Lessons 10-11: Adding & subtracting rational expressions: Module 3: Rational and exponential functionsTopic B: Lessons 12-13: End behavior and asymptotes of rational functions: Module 3: Rational and exponential functionsTopic B: Lessons 14-15: Graphing rational functions: Module 3: Rational and exponential functionsTopic B: Lessons 16-17: Function composition: Module 3: Rational and exponential functionsTopic C: Lesson 18: Inverse functions: Module 3: Rational and exponential functionsTopic C: Lesson 19: Restricting the domain: Module 3: Rational and exponential functionsTopic C: Lessons 20-21: Inverse relationship of exponentials and logarithms: Module 3: Rational and exponential functions
Topic A: Lesson 1: The general multiplication rule: Module 5: Probability and statisticsTopic A: Lesson 2: Counting rules—The fundamental counting principle and permutations: Module 5: Probability and statisticsTopic A: Lesson 3: Counting rules—Combinations: Module 5: Probability and statisticsTopic A: Lesson 4: Using permutations and combinations to compute probabilities: Module 5: Probability and statistics
Topic B: Lessons 5-6: Discrete random variables: Module 5: Probability and statisticsTopic B: Lessons 7-8: Expected value: Module 5: Probability and statisticsTopic B: Lessons 9-12: Creating probability distributions: Module 5: Probability and statisticsTopic C: Lessons 13-19: Applications of expected value and probability: Module 5: Probability and statistics
Test your knowledge of the skills in this course. Have a test coming up? The Course challenge can help you understand what you need to review.