If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Separable equations introduction

"Separation of variables" allows us to rewrite differential equations so we obtain an equality between two integrals we can evaluate. Separable equations are the class of differential equations that can be solved using this method.

Want to join the conversation?

  • blobby green style avatar for user John.Loukovitis
    Is a further explanation of + possible, please? (I can't quite understand what's happening there with the -2 before the x and the 1/2 etc ..and the subtitles ain't helping) Thanks in advance
    (46 votes)
    Default Khan Academy avatar avatar for user
  • purple pi purple style avatar for user nidhi bharadwaj
    dy/dx is just a notation not a fraction,so how does multiplying by dx and canceling it make sense?
    (38 votes)
    Default Khan Academy avatar avatar for user
    • leaf orange style avatar for user Orangus
      This is just a mnemonic device, although it does simply only a tiniest bit, here's a way without separating variables:

      first you move all y's on one side, then all x's on the other side
      then you move dy/dx to the side where you have all y terms:

      y_terms * dy/dx = x_terms

      now integrate both sides, with respect to x:
      ∫ (y_terms * dy/dx) dx = ∫ x_terms dx

      ∫ dy/dx dx = y; but ∫ 1 dy = y as well, therefore: ∫ (dy/dx) dx = ∫ (1) dy = y

      So you end up with turning ∫ (y_terms dy/dx) dx = ∫ x_terms dx
      into ∫ y_terms dy = ∫ x_terms dx

      Also take a look at this: https://proofwiki.org/wiki/Separation_of_Variables

      In general, you are always able to solve the same problem in calculus without separating dy's and dx's, that includes differential equations as well. Although that might require more time, thinking and space on your paper..

      Hope that helps.
      (46 votes)
  • winston default style avatar for user Francesco Nuzzo
    At why does it become e^[(-x^2)/2]? Shouldn't it be e^[-x] because i cancel the 2? Properties of powers, isn't it?
    (16 votes)
    Default Khan Academy avatar avatar for user
    • mr pants teal style avatar for user James Mick
      This is a common mistake that I have seen. The correct answer is indeed e^[-x^2/2].

      sqrt (e^[-x^2] ) = (e^[-x^2] )^(1/2) <-- in this instance, you multiply the exponents

      e^[-x^2 * 1/2] = e^[-x^2/2]

      From EEweb.com

      a^[n/m] = (a^[1/m] ) ^n = (a^n)^[1/m]

      --------------------------------------------------------------------------------------------------------------------------------------------
      (24 votes)
  • female robot ada style avatar for user Raviv Sarch
    around , Sal sets y equal to the principle root of the left side, because the initial condition only gives a positive y value. But why is this necessary? Wouldn't it be just as correct to say plus or minus?
    (11 votes)
    Default Khan Academy avatar avatar for user
    • duskpin sapling style avatar for user jolson615
      I agree with Raviv; I'm fairly certain that the y^2=e^-x2 would also work. The question didn't specify that we had to find a function - since we can differentiate a conic section and end up with an expression for dy/dx, then if working backwards yields a curve that is not a function, that curve should still satisfy the conditions set forth in the problem.
      (7 votes)
  • starky ultimate style avatar for user Darren Leung
    How can you tell if differential equations are separable?
    (5 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user Sagnik Dey
    isn't -x2 always x2? So it could be simplified more.
    (1 vote)
    Default Khan Academy avatar avatar for user
  • leafers ultimate style avatar for user TripleB
    Is there a reason that there is no video on solving a first order DE with the "Linear" method?

    I'm referring particularly to this:
    http://tutorial.math.lamar.edu/Classes/DE/Linear.aspx

    Is it that this method isn't as useful or is it possible to do that type of problem with another method?

    Or maybe it just hasn't been added yet.
    I'm just trying to organize the various methods for solving a DE.
    Thanks.
    (5 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user Gladwin
    At @ how can he integrate both sides with different "d's "? (one is dx and other is Dy ) . u have to integrate both sides with same dx right ?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • leafers seedling style avatar for user colinhill
    I'm a little bit confused on what our goal is and what we did here. I understand differential equations conceptually as an equation that's solutions are functions, but here what happened? Is the equation that we came up with at the end one of many equations?

    Is this question, in word form, asking for a function whose derivative is equal to any of its points (x,y) where the x-value is multiplied by negative one and then divided by the y-coordinate multiplied by e to the power of the x-coordinate squared?

    Was it the integration that turned the question from a differential equation to a solution of that differential equation?

    Sorry for a lot of questions.
    (1 vote)
    Default Khan Academy avatar avatar for user
    • male robot donald style avatar for user Venkata
      Let's take this one at a time:

      Q: Is the equation that we came up with at the end one of many equations?

      A: Not quite. What we got at the end (y = e^((-x^2)/2)) is the (specific) solution to the differential equation we started off with (dy/dx = -x/y(e^(x^2)). If we didn't have the initial condition of the equation passing through (0,1), the constant of integration would be in our solution. Then, it would represent a family of equations, and not any specific one

      Q: Is this question, in word form, asking for a function whose derivative is equal to any of its points (x,y) where the x-value is multiplied by negative one and then divided by the y-coordinate multiplied by e to the power of the x-coordinate squared?

      A: You're close there. Given dy/dx = -x/y(e^(x^2)), it simply means that there is some function (y) whose derivative is -x/y(e^(x^2)). Our final answer's derivative is exactly this...but you might see these two and go, "Wait! dy/dx is -x/y(e^(x^2)), but the derivative of the final answer doesn't have y in it!" That's a reasonable observation. Now, in the equation for dy/dx, if you substitute y = e^((-x^2)/2) and compare it with the derivative of the y you get, you'll see that the answers will match.

      Q: Was it the integration that turned the question from a differential equation to a solution of that differential equation?

      A: Yep! The integration did indeed turn a differential equation into the solution to the differential equation. Why? It's because of the nature of the derivative and integral. When you had dy/dx = -x/y(e^(x^2)), it was essentially the derivative of y given. To reverse this derivative, we integrate, as we know that doing so gives us back our original function y.

      Also, no need to apologize for asking a lot of questions. The more you ask, the better understanding you gain!
      (6 votes)
  • leaf red style avatar for user Miu
    At Sal first moves around the derivative operators and then adds the integral operators, which as far as I'm concerned, is an abuse of notation. I understand it "works", but given that it hasn't been formally defined I find it rather arcane. Isn't there some resource where this kind of notation is rigorously defined?, or is it used like that as a convention untill it breaks? I would like to learn some way of making it more rigorous, and more importantly, consistent, because I fear I might get confused later on when trying to use these still respectable methods. So even if it is obscure and impopular, if someone knows about some altern and more meaningful notation, I would like to know.
    (1 vote)
    Default Khan Academy avatar avatar for user
    • male robot donald style avatar for user Venkata
      It is definitely abuse of notation, as dy/dx isn't a fraction. But, treating it like one is extremely helpful (and at the level you're at, there really isn't a good example where treating it as a fraction fails. However, there are some caveats to this idea when you get to partial derivatives, where treating ∂y/∂x as a fraction could be pretty problematic). So, what Sal did isn't wrong from a non-rigorous point of view.

      You'll need much more advanced Mathematics to be able to define differentials rigorously. So, just for now, thinking of it as a fraction will work (though yes, it really isn't, as dy and dx are infinitesimals, and they behave pretty differently as compared to finite numbers)
      (5 votes)

Video transcript

- [voiceover] So now that we've spent some time thinking about what a differential equation is and even visualizing solutions to a differential equations using things like slope field, let's start seeing if we can actually solve differential equations. As we'll see, different types of differential equations might require different techniques and some of them we might not be able to solve at all using analytic techniques. We'd have to resort to numeric techniques to estimate the solutions. But let's go to what I would argue as the simplest form of differential equation to solve and that's what's called a Separable. Separable differential equation. And we will see in a second why it is called a separable differential equation. So let's say that we have the derivative of Y with respect to X is equal to negative X over Y E to the X squared. So we have this differential equation and we want to find the particular solution that goes through the point 0,1. I encourage you to pause this and I'll give you a hint. If you can on one side of this equation through algebra separate out the Ys and the DYs and on the other side have all the Xs and DXs, and then integrate. Perhaps you can find the particular solution to this differential equation that contains this point. Now if you can't do it don't worry because we're about to work through it. So like I said, let's use a little bit of algebra to get all the Ys and DYs on one side and all the Xs and DXs on the other side. So one way, let's say I want to get all the Ys and DYs on the left hand side, and all the Xs and DXs on the right hand side. Well, I can multiply both sides times Y. So I can multiply both sides times Y that has the effect of putting the Ys on the left hand side and then I can multiple both sides times DX. I can multiple both sides times DX and we kind of treat, you can treat these differentials as you would treat a variable when you're manipulating it to essentially separate out the variables. And so, this will cancel with that. And so, we are left with Y, DY. Y, DY is equal to negative X. And actually let me write it this way. Let me write it as negative X, E. Actually, I might need a little more space. So negative X E to the negative X squared DX. DX. Now why is this interesting? Because we could integrate both sides. And now this also highlights why we call it the separable. You won't be able to do this with every differential equation. You won't be able to algebraically separate the Ys and DYs on one side and the Xs and DXs on the other side. But this one we were able to. And so that's why this is called a separable differential equation. Differential equation. And it's usually the first technique that you should try. Hey, can I separate the Ys and the Xs and as I said, this is not going to be true of many, if not most differential equations. But now that we did this we can integrate both sides. So let's do that. So, I'll find a nice color to integrate with. So, I'm going to integrate both sides. Now if you integrate the left hand side what do you get? You get and remember, we're integrating with respect to Y here. So this is going to be Y squared over two and we could put some constant there. I could call that plus C one. And if you're integrating that that's going to be equal to. Now the right hand side we're integrating with respect to X. And let's see, you could do U substitution or you could recognize that look, the derivative of negative X squared is going to be negative two X. So if that was a two there and if you don't want to change the value of the integral you put the 1/2 right over there. And so now you could either do U substitution explicitly or you could do it in your head where you said U is equal to negative X squared and then DU will be negative to X, DX or you can kind of do this in your head at this point. So I have something and it's derivative so I really could just integrate with respect to that something too with respect to that U. So this is going to be 1/2. This 1/2 right over here. The anti-derivative. This is E to the negative X squared and then of course, I might have some other constant. I'll just call that C two. And once again, if this part over here what I just did seemed strange, the U substitution, you might want to review that piece. Now, what can I do here? We'll have a constant on the left hand side. It's an arbitrary constant. We don't know what it is. I haven't used this initial condition yet we could call it. So, let me just subtract C one from both sides. So if I just subtract C one from both sides I have an arbitrary so this is gonna cancel, and I have C two, sorry. Let me. So, this is C one. So these are going to cancel and C two minus C one. These are both constants, arbitrary constants and we don't know what they are yet. And so, we could just rewrite this as on the left hand side we have Y squared over two is equal to on the right hand side. I'll write 1/2 E. Let me write that in blue just because I wrote it in blue before. 1/2 E to the negative X squared and I'll just say C two minus C one. Let's just call that C. So if you take the sum of those two things let's just call that C. And so now, this is kind of a general solution. We don't know what this constant is and we haven't explicitly solved for Y yet but even in this form we can now find a particular solution using this initial condition. Let me separate it out. This was a part of this original expression right over here but using this initial condition. So, it tells us when X is zero, Y needs to be equal to one. So we would have one squared which is just one over two is equal to 1/2. E to the negative zero squared. Well, that's just going to be e to the zero is just one. This is gonna be 1/2 plus C and just like that we're able to figure out if you subtract 1/2 from both sides C is equal to zero. So the relationship between Y and X that goes through this point, we could just set C is equal to zero. So that's equal to zero. That's zero right over there. And so we are left with Y squared over two is equal to E to the negative X squared over two. Now we can multiply both sides by two and we're going to get Y squared. Y squared. Let me do that. So we're gonna get Y squared is equal to E to the negative X squared. Now, we can take the square root of both sides and you can say, well look, you know, Y squared is equal to this so Y could be equal to the plus or minus square root of E to the negative X squared. Of E to the negative X squared. But they gave us an initial condition where Y is actually positive. So we're finding the particular solution that goes through this point. That means Y is gonna be the positive square root. If this was a point zero negative one then we would say Y is the negative square root but we know that Y is the positive square root, it's the principal root right over there. So let me do that a little bit neater so we can get rid of, whoops. I thought I was writing in black. So we can get rid of this right over here. We're only going to be dealing with the positive square root so we could write Y is equal to E to the negative X squared to the 1/2 power and that of course is equal to E to the negative X squared over two. So this right over here is or Y equals E to the negative X squared over two is a particular solution that satisfies the initial conditions to this original differential equation. So just like that. Because we were able to just as a review, because this differential equation was setup in a way or because we could algebraically separate the Y, DYs from the Xs, DXs, we're able to just separate them out algebraically, integrate both sides and use the information given in the initial condition to find the particular solution.