Main content
Surface area versus volume
A 3D figure has both surface area and volume measurements, but we use them for different purposes. Learn the difference and when to use each.
Making sense of units
We have many types of units. Some measure length in dimension. Some measure area in dimensions. Others measure volume in dimensions. Units come in larger and smaller sizes, too.
Key measurement terms
Length is a -dimensional measurement. It tells us the number of units between one point and another. We measure length in units like centimeters, inches, feet, meters, kilometers, and miles.
- Perimeter is a special example of length. It is the distance around a closed 2D figure.
Area is a -dimensional measurement. It tells us the amount of space enclosed in a 2D figure. We measure area in square units such as square centimeters ( ), square inches, and square meters.
- Surface area is a special example of area. It tells us the number of square units it would take to cover the faces of the 3D figure.
Volume is a -dimensional measurement. It tells us the number of cubic units it would take to fill a 3D figure. We measure volume in units like cubic centimeters ), cubic inches, and cubic meters. For liquids, we sometimes use different volume units, such as milliliters, cups, liters, and gallons.
Notice, this means that we can measure both the surface area and the volume of a 3D figure, but they tell us different things about the figure.
Distinguishing area and volume
Let's consider the same situations from before, this time to decide whether which type of measurement makes the most sense.
The same 3D figure can have both surface area and volume.
Let's contrast the volume and surface area of two figures.
So the figures have the same volume, but different surface areas!
The opposite is possible, too. Two figures could have the same surface area, but different volumes.
Try it out!
Want to join the conversation?
- why is there so many on on question?(11 votes)
- Isn’t that good for practice?(18 votes)
- why the Surface area is 32(9 votes)
- idk but i also got 32 on the first try by adding the 4 middle parts(1 vote)
- What the heck is this its so hard🥲(9 votes)
- ikr why do we need to learn this(1 vote)
- What is 3x3x3x3x3x3x3x3x3x3x3x3(4 votes)
- 3x3x3x3x3x3x3x3x3x3x3x3= 531441(6 votes)
- I dont know what to ask(6 votes)
- why is it LITTARLY so hard to do and even understand?(7 votes)
- You should ask your teacher for more help if you don't understand(0 votes)
- this dont make sence(8 votes)
- if you pay attention it does(0 votes)
- i dont understand how to find the surface area of the 3d shape with a hole in it(3 votes)
- look at the whole and notice that it has 4 faces surrounding it. Find the surface area like you normally would then add the 4 faces to the equation. The equation would look something like this: A=8+8+3+3+3+3+1+1+1+1.(3 votes)
- idk what any of these questions were.(4 votes)
- I was kind of confused after reading and doing the practice, so I had to redo it three times over. Worth it though, compared to other curriculums I've done. Is there a way I can learn to understand surface area versus volume better?(4 votes)