If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Linear functions word problem: iceberg

Sal is given a verbal description of a real-world relationship involving a melting iceberg, and is asked to find the formula of the function that represents this relationship.

Want to join the conversation?

  • male robot johnny style avatar for user Falstaff
    The notation confuses me.
    I have always thought of parenthisis as multiplication. So S(0) should be zero.
    Just like 2(x+1) = 2x+2
    What do I have to put into my brain to make this make sense to me?
    (8 votes)
    Default Khan Academy avatar avatar for user
    • leaf blue style avatar for user Stefen
      You REALLY need to get used to the meaning of parenthesis with respect to context that they are being used.
      If I say, what is "f(2)" I want to know the output value of function f with the input value 2.
      If I am told there is a function called S(t) and I am asked, what is the value of the function S when t=0, then I write S(0). In these cases, functional notation is the context, so f or S is the name of the function and 2 or 0 or t is the value at which to evaluate the function.
      If I say, what is 2(x+1) or x(2y + 7x), then the context is obviously multiplication.
      With more time, it will become second nature!
      AND - there are some other meanings of ( ) as well!
      Keep Studying!
      (2 votes)
  • aqualine sapling style avatar for user 20407
    At what exactly does denote mean in math terms?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • duskpin ultimate style avatar for user Pranav Chandra
    At , Sal's equation is S(t) = -0.25t +2. Is S(t) the dependent variable or just S?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • duskpin sapling style avatar for user Ishy Ish
      S(t) is a function not a dependent variable.
      A function is kind of a box which takes a number and throws a different number back.
      The name of the box is S and the number you put in is t ( which could be any number ).
      Let us say that t is 4 and we throw 4 in the S box, inside the box, we multiply 4 * -0.25 which equals -1 , then we add 2 to it.
      If we see it in the equation form it will look like this:
      S(4) = -0.25 * (4) + 2
      (3 votes)
  • male robot donald style avatar for user Nicholas Upton
    So what's the difference between a graph and t-chart?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • starky seed style avatar for user Kay Aje
    What if the rate of change was not constant? How much harder would this become? I bet this is the advent of calculus?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • primosaur seed style avatar for user Ian Pulizzotto
      Nice question!

      Yes, you are correct that functions with non-constant rates of change are the advent of calculus! For example, suppose we are given the ice sheet's initial thickness and also given the rate of change of the thickness as a function of time. To find the formula for the thickness as a function of time, we would need to 1) find the anti-derivative of the rate of change function, then 2) use the initial thickness to solve for the constant term that appears in the anti-derivative. (Derivatives and anti-derivatives are the two main operations in calculus, and both operations are ultimately based on the concept of a limit.)

      Have a blessed, wonderful day!
      (4 votes)
  • aqualine ultimate style avatar for user sugarkin246
    Why did Sal use the slope-intercept form to find the equation for this question?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user Jerry Li
    Sal's example is S(0)=-0.25(0)+2. Wouldn't this mean that the -0.25(0) is redundant? Cause it would just equal 0.
    (1 vote)
    Default Khan Academy avatar avatar for user
    • stelly blue style avatar for user Kim Seidel
      Sal uses the example of S(0) to find the Y-intercept of the function. In this one case, -0.25t becomes zero. The function S(t) = -0.25t + 2 is designed for all values of "t", not just when t=0. For all other values of "t", the -0.25t portion is needed to get the correct result from the function.
      (4 votes)
  • piceratops ultimate style avatar for user Brandon R-S
    Why do we write functions as, for example S(0)=2?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leafers sapling style avatar for user s21469
    hi this is from 2022 im 13 :D
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leaf red style avatar for user Gamar
    Why are we using a function for this?
    What does S(t) really mean beyond what looks to be Thickness of time?
    (2 votes)
    Default Khan Academy avatar avatar for user

Video transcript

- [Voiceover] "A lake near the Arctic Circle is covered "by a 2-meter-thick sheet of ice "during the cold winter months. "When spring arrives, the warm air gradually melts the ice, "causing its thickness to decrease at a constant rate." It's gonna decrease at a constant rate. "After 3 weeks, the sheet is only 1.25 meters thick. "After 3 weeks, the sheet is only 1.25 meters thick. "Let S(t) denote the ice sheet's thickness S "(measured in meters) as a function "of time (measured in weeks). "Write the function's formula." Alright, so we have some interesting things here. They've given us some values for this function. We know when time is equal to zero. We know that S of zero, when time equals zero, that's when the sheet is two meters thick. So S of zero is equal to two. And they also tell us that after three weeks, the sheet is only 1.25 meters thick. And when we have the function S of t, S is measured in meters, time is measured in weeks. So after zero weeks, we're two meters thick, and then they tell us, after three weeks-- So S of three. After three weeks, we're 1.25 meters thick. Or another way to think about it, I could write t here in weeks and S in meters, and when time is zero, we're two meters thick, and when time is 1.-- Sorry, when time is three weeks, we are 1.25 meters thick. So when our change in time is equal to positive three, we increased our time by three, what's our change in thickness? Our change in thickness, the triangle here, that's the Greek letter delta, shorthand for "change in," well, this was negative 0.75. So what was the rate of change over this time? And they tell us that the rate of change is at a constant rate. So whatever it is between these two periods of time, between zero weeks and three weeks, it would be that same rate between any two periods of time, between zero week and one week, or one week and two weeks, or 1 1/2 weeks and 1.6 weeks. So what is the rate of change of thickness relative to time? Well, it's going to be change in thickness over change in time. How much does our thickness change per time? Well, we saw right over here. Our thickness went down, set 0.75 meters in three weeks. Or we could say that this right over here is equal to, let's see. 75 divided by three is 25, so 0.75 divided by three is 0.25. We have the negative out there, negative 0.25 meters per week. So how can we take the information we have and express this as a function? It's going to be a linear function, because we see that we are changing at a constant rate. Let's think about it a little bit. Linear functions, one way we could write it is in-- So we could write it-- If we were dealing with x and y, you might recognize y is equal to mx plus b, often written as slope-intercept form. This is when you're dealing with x as the, I guess you could say the independent variable, y as the dependent variable, and b would be where you start. What happens when x equals zero and m is your rate of change, it's your slope? So in this case, we don't have y and x, we're going to have S and t. We have S as a function of time, and it's going to be equal to the rate of change... times time, plus where we started, plus b. Now, what is b going to be? Well, one way to think about it is, well, what's S of zero going to be? S of zero is going to be m times zero, plus b. S of zero is going to be b. Well, we already know that this ice sheet, it starts off at two meters thick. So S of zero is equal to b, is equal to two. So b is equal to two. And what is m? Well, we've already said, that's our rate of change, that is our slope, that is how much our thickness changes with respect to time. And we already figured out that that's negative 0.25. So m is negative 0.25. You could say that m is the slope between this point, between the point zero comma two, and the point three comma 1.25, if we were plotting these points on a t/S coordinate plane. So now we can write what the function's going to be. Maybe I'll do this in a new color just for fun. S of t, thickness as a function of time, is going to be equal to m, negative 0.25, times time, plus two. Or if you want, you could write it like this, two minus 0.25t. I actually like this form a little bit better. In my brain, it kind of describes what's happening a little bit more. When time is equal to zero, you're starting at two meters thick, and then every week that goes by, as t increases by one, you're going to lose a quarter of a meter. You're going to lose, you have a negative value right over here, you're gonna lose 0.25 meters. And if you really want to kind of get this even in a deeper level, I encourage you to graph it, and it'll become even clearer what's going on here. That this right over here is this right over here, is this right over here, this is the slope of the line that represents the solution set to this equation, and this two, this would be your vertical intercept. In this case, it would be your S-intercept as opposed to your y-intercept, when y is the vertical axis.