# Indefinite integrals

Contents

If f is the derivative of F, then F is an antiderivative of f. We also call F the "indefinite integral" of f. In other words, indefinite integrals and antiderivatives are, essentially, reverse derivatives. Why differentiate in reverse? Good question! Keep going and you'll find out!

If f' is the derivative of f, then f is the antiderivative of f'. To find the antiderivative of a function we need to perform some kind of reverse differentiation. Learn about it here.

Indefinite integrals are the way integral calculus deals with antiderivatives. Gain some practice in finding various indefinite integrals.

Indefinite integrals (or antiderivatives) are really just backward differentiation. Therefore, the indefinite integral of eˣ is eˣ+c, the indefinite integral of 1/x is ln(x)+c, the indefinite integral of sin(x) is -cos(x)+c, and the indefinite integral of cos(x) is sin(x)+c.

Review your understanding of indefinite integrals and antiderivatives with some challenge problems.