If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

# Connecting limits at infinity notation and graph

Sal analyzes a function with an asymptote and finds the correct description of the two one-sided limits of the function at that asymptote.

## Want to join the conversation?

• Do limits have a application without calculus?
• How do we know if we should approach from the left or the right side? I started doing this problem by myself first and when I see x-->6+ I automatically went for left tor right because it seemed to me that I was going from minus infinity to +6...
• 6⁺ means the limit from the right, because we're looking at the region in the positive direction (to the right) of 6. 6⁻ is from the left because we're looking at the region in the negative direction (to the left).
• I'm looking for ways one can solve a limit function through different methods, and found that my school and Khanacadamy's way of tackling these materials are somewhat different. I'm not sure if Sal mentioned this (my calculus book discussed this btw) but you could also find algebraically the limit of a function as x approaches infinity by dividing by the highest power of a variable. did sal mention this somewhere?
(1 vote)
• why i dont know but whenever is ee such graphs i try to calculate the formula of the equation. wouldnt it be good to express them also?
(1 vote)