Main content
AP®︎/College Statistics
Course: AP®︎/College Statistics > Unit 6
Lesson 1: Introduction to planning a study- Identifying a sample and population
- Identify the population and sample
- Generalizability of survey results example
- Generalizability of results
- Types of studies
- Worked example identifying observational study
- Invalid conclusions from studies example
- Types of studies
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Invalid conclusions from studies example
AP.STATS:
DAT‑2 (EU)
, DAT‑2.B (LO)
, DAT‑2.B.3 (EK)
CCSS.Math: , Example understanding when a conclusion about causality can be made from a study. Discussion of experimental and observational studies.
Want to join the conversation?
- In general, are there other common ways to design experimental studies of similar kind to establish causality? (apart from using Control / Experimental groups?)(2 votes)
- Hi Igor,
Yes, there are many kinds of experimental study designs. Some that I learned about in my a research class I took include: experimental, quasi-experimental, ex post facto, case study, ethnography, and others. This website also talks about some others (https://cirt.gcu.edu/research/developmentresources/research_ready/experimental/design_types).
Hope that helped.
You can learn anything!(3 votes)
- What is the randomized sample?(1 vote)
- I'm pretty sure you've heard of SRS. It means Simple Random Sample. Basically, they don't go look for, say, their friends, but more like an "if I encounter you, can you please fill out this survey" kind of thing.
Hope this helps!(2 votes)
- could we call this a sample survey too?
if then, what's the systematical difference between a sample survey and an observational study? so arbitrary now(1 vote)- The data was collected through a sample survey.
The relationship between smartphone usage and happiness was found through an observational study of the data.(1 vote)
- Note: Correlation does not imply causality.(1 vote)
- A survey of 15 randomly-selected customers at an Elmwood athletic shoe store were asked whether they prefer to watch soccer or another sport. Twenty percent of those surveyed named soccer as their favorite sport to watch. No other sport was named by 20% or more of the participants, so it is safe to conclude that soccer is Elmwood's favorite sport.(1 vote)
- Can you give an example that there is a correlation from left to right, but not vice versa?(1 vote)
Video transcript
- [Instructor] Jerry was reading about a study that
looked at the connection between smartphone usage
and happiness based on data from approximately 5,000
randomly selected teenagers. The study found that on average the teens who spent
more time on smartphones were significantly less happy than those who spent
less time on smartphones. Jerry concluded that spending more time on smartphones makes teens less happy. All right this is interesting. So what I want you to do is think about whether Jerry is making
a valid conclusion or not. And why or why don't you think he's making a valid conclusion? All right now let's work on this together. This is really important to understand because you will see things like this in the popular media all the time that try to establish a causality when there might not be causality. Or at least where the study might not be able to show causality. So right now Jerry is
saying he's concluding that smartphone usage, smartphone usage makes teens less happy, so he's assuming there's a causal connection. Smartphone usage causes
teens to be less happy. Less happy, can he actually
make that conclusion from this study based
on how it was designed? Well the first thing to ask ourselves is is this an experimental study that is designed to establish causality or is it an observational study where we really can just
say there's an association but we really can't make a
statement about causality? Well in experimental
study he would have had to have a control group
and then a treatment group sometimes called a experimental group. So I'll say that's control group, that's the treatment or
the experimental group. And then you randomly assign folks to one of those two groups and then you would make that treatment group use a cell phone more and
see if they are less happy. That's not what happened here. What happened here was
an observational study. In this study we are
looking at two variables. So you have your smartphone usage and then you have the teen happiness. And they took these 5,000
randomly selected teenagers and they figured out
their smartphone usage and their happiness, maybe
with a survey of some kind. And then you could plot those data points. You would have 5,000 data points. So this data point right over here would be a very happy teenager that doesn't use a smartphone much. This would be a not so happy teenager that uses a smartphone a lot. And so you would plot those data points and there might be a teenager who's unhappy and doesn't use a smartphone or one that is happy and
that uses a smartphone a lot. But you can see there's a trend, there's an association that in general the teenagers who use the smartphones more seem to be less happy and the teenagers who use the smartphones
less seem to be more happy. But it's important to realize that the causality could
go the other way around. Maybe less happy teenagers
use their smartphones more and maybe more happy teenagers don't find a need to use a smartphone. Or there could be some variable that's not even being
observed in this study that has a causal relationship
with both of these. So there could be some other variable that might cause someone to be less happy and use their smartphone more. So in an observational
study, you can really just say there is an association. You wouldn't be able to say
that there is causality. So Jerry is not making a valid conclusion, it's an observational study, we've only established an association not causality.