If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains ***.kastatic.org** and ***.kasandbox.org** are unblocked.

Main content

Current time:0:00Total duration:3:22

- [Tutor] In a previous
video we used this theorem to evaluate certain types
of composite functions. In this video we'll do
a few more examples, that get a little bit more involved. So let's say we wanted
to figure out the limit as x approaches zero of f of g of x, f of g of x. First of all, pause this video and think about whether
this theorem even applies. Well, the first thing to think about is what is the limit as x
approaches zero of g of x to see if we meet this first condition. So if we look at g of x, right over here as x approaches zero from the left, it looks like g is approaching two, as x approaches zero from the right, it looks like g is approaching two and so it looks like this
is going to be equal to two. So that's a check. Now let's see the second condition, is f continuous at that limit at two. So when x is equal to two, it does not look like f is continuous. So we do not meet this second
condition right over here, so we can't just directly
apply this theorem. But just because you
can't apply the theorem does not mean that the limit
doesn't necessarily exist. For example, in this situation the limit actually does exist. One way to think about it, when x approaches zero from the left, it looks like g is
approaching two from above and so that's going to be the input into f and so if we are now
approaching two from above here as the input into f, it looks like our function
is approaching zero and then we can go the other way. If we are approaching zero from
the right, right over here, it looks like the value of our function is approaching two from below. Now if we approach two from below, it looks like the value
of f is approaching zero. So in both of these scenarios, our value of our function
f is approaching zero. So I wasn't able to use this theorem, but I am able to figure out that this is going to be equal to zero. Now let me give you another example. Let's say we wanted to
figure out the limit as x approaches two of f of g of x. Pause this video, we'll first see if this
theorem even applies. Well, we first wanna see what is the limit as x approaches two of g of x. When we look at approaching
two from the left, it looks like g is
approaching negative two. When we approach x equals
two from the right, it looks like g is approaching zero. So our right and left hand
limits are not the same here, so this thing does not
exist, does not exist and so we don't meet this
condition right over here, so we can't apply the theorem. But as we've already seen, just because you can't apply the theorem does not mean that the
limit does not exist. But if you like pondering things, I encourage you to see that
this limit doesn't exist by doing very similar analysis to the one that I did
for our first example.

AP® is a registered trademark of the College Board, which has not reviewed this resource.