Main content

### Course: Algebra 2 > Unit 12

Lesson 2: Interpreting features of functions# End behavior of algebraic models

Sal analyzes the end behavior of graphs that model real world situations.

## Want to join the conversation?

- how can we dicid that the function is exponential or logarithmic?(4 votes)
- I guess your question is about how to determine which kind of shape both functions have.

A handy trick to differentiate between the graphs of an**exponential**and**logarithmic**function is that the former has a**horizontal asymptote**and the latter has a**vertical asymptote**.

Please comment if you've further questions.(10 votes)

- how would I make the equation for the exponential graph A in the first problem where (0,90) and (5,50). I'm guessing part of it is y=a*b^-x +20(1 vote)
- What is end behavior

Please help me(1 vote)- End Behavior is essentially the value a function approaches as it moves closer to positive or negative infinity. For example, a linear function F(x) = 3x would approach infinity as x approaches infinity and would approach negative infinity as x approaches negative infinity. Another example would be the function (1 + 1/x)^x which moves toward e (Euler's number) as it moves toward both infinity and negative infinity never quite reaching it. These values that a function moves toward are known as its asymptotes.(1 vote)

## Video transcript

- [Voiceover] A barista
poured a cup of coffee. The initial temperature of the coffee was 90 degrees Celsius. At time t increased (laughs). As time t increased, the
temperature C of the coffee began to decrease exponentially and approach room temperature
of 20 degrees Celsius. Which of the following graphs
could model this relationship? So we're starting at 90 degrees Celsius. It looks like all of the graphs
start at 90 degrees Celsius at t equals zero. And we're going to approach
the room temperature of 20 degrees Celsius. So this first one does
approach the room temperature of 20 degrees Celsius as t increases. Now this one, when t is 70, when t is 70. I'm assuming this is in minutes. When t is 70 it looks like
it has the temperature going to zero degrees Celsius so that cup of coffee is
going to start freezing. So I think I can rule out B. Also this looks like a linear
model not an exponential one. C, it does get us to this end state that stays at 20 degrees, but it doesn't look like
an exponential model. It looks like it's linearly decreasing and then it stops linearly
decreasing after 50 minutes and then it just stays
constant at that temperature of 20 degrees. So even though it gets
us to the right place, it does not look like
an exponential decay. So I would rule choice C out as well. So A is looking good. D, we are starting at 90, it does look like an exponential function. We have exponential decay right over here and we are approaching something but it's not the room temperature of 20 degrees Celsius. We're approaching 30 degrees Celsius here. So I'd also rule out D. So A is looking good. It's an exponential. It's decreasing exponentially. Starting at 90 degrees Celsius and it's approaching the room temperature of 20 degrees Celsius. Let's do another one of these. So it says. Let me scroll up a little bit. So it says, after the
closing of the mills, the population of the town
starts decreasing exponentially. The graph below represents
the population, P, in thousands, of the town t years after the closing of the mill. Alright. So it looks like the
population starts at 40,000. It's decreasing exponentially. It looks like, over time, the population is approaching 20,000 people. So, what are the question here? Based on the graph, with the mill closed, what does the population
of the town approach as time increases? We just said it. As time increases, it looks
like it's coming close to, it's approaching, 20,000. It's approaching 20,000. It's already gotten
below 22,000 as far as, you know, it looks like
after 20 or 22 years. We've already gotten below 22,000, so we're definitely below 30 or 40,000. But we haven't gotten below 20,000 but we are approaching it. We can even check our answer if we like.