If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Evaluating quotient of fractional exponents

Sal simplifies the complicated expression 256^(4/7) / 2^(4/7)  until he finds that the expression is equal to 16.

Want to join the conversation?

  • male robot hal style avatar for user neeziv
    I am not sure why one cant subtract the exponents while we are dividing. Given:
    256^(4/7) / 2^(4/7) Why does the rule of subtracting exponents(4/7 - 4/7) in this situation fail? Thank you
    (17 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user 黄 俊鹏
    What about the exponent is a irrational number?Like we describe 2^0.5=sqrt(2) , but how do we define 2^sqrt(2)?
    (6 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Aleena
    Doesn't simplifying the fraction (dividing 256 by 2 to reach 128) violate the PEMDAS rule whereby operation of exponent precedes that of division or multiplication?
    (4 votes)
    Default Khan Academy avatar avatar for user
    • stelly blue style avatar for user Kim Seidel
      There is a property of exponents that tells us that having a fraction raised to an exponent is the same as having both the numerator and denominator individually raised to the exponent.
      For example: (1/2)^3 = 1^3/2^3
      The problem in the video is both the numerator and denominator with the same exponent. So, Sal uses this property exponents to bring the fraction back together, which allows him to then do the division.
      Hope this helps.
      (6 votes)
  • mr pants teal style avatar for user Adrian CantSayLastName
    So 3.14 = 3/4?
    I Dont Understand
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Melanie Govender
    hi. so i made the bases the same, and then subtracted the exponents due to division, and i arrived at the same answer. is the method that i used valid?

    (2^8)^4/7 2^32/7
    ---------- = -------- = 2^28/7 = 2^4 = 16
    2^4/7 2^4/7
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Anas Mashhood
    Can't you subtract exponents when dividing? Thank You.
    (1 vote)
    Default Khan Academy avatar avatar for user
    • stelly blue style avatar for user Kim Seidel
      Yes. If you have 2 values with a common base, you can subtract their exponents to do the division.
      For example: 2^(5/4) / 2^(1/2) = 2^(5/4-1/2)
      Since you are subtracting fractions, you need a common denominator: 2^(5/4-2/4) = 2^(3/4)

      Hope this helps.
      (5 votes)
  • female robot grace style avatar for user Emma
    At , what dos he mean by computationally intensive?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • duskpin sapling style avatar for user DigitalPanda213
      A computation is just a mathematical calculation, so to say something is computationally intensive meaning that its hard to calculate. For instance, 1+1 is very easy to compute, so easy in fact you probably did it in your head without even thinking. Something like 128^4, or 53619 x 79863 would be considered hard to compute (without a calculator of course (unless perhaps you're a genius))
      (2 votes)
  • starky ultimate style avatar for user SH4RPSH00TER
    What would happen if the coefficients of the fraction are the same? For example "(125^-11/12)/(125^-1/4)"
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user 😊
    Would a decimal answer be correct for some examples? like; (128/2)^3/7 = 5.94397715655 . right?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • leaf green style avatar for user Alexandra Florescu
    I don't understand why 128 to the 1/7 power is 2 even though I do understand that 2 to the 7th power is 128...I just can't see the connection :(
    (1 vote)
    Default Khan Academy avatar avatar for user
    • stelly blue style avatar for user Kim Seidel
      A rational exponent (a fraction as an exponent) is just a different form of notation for radicals.
      If you have 128^(1/7), the exponent of 1/7 means or is the same as 7th root(128). Both = 2.

      Just like we have different symbols or ways to show multiplication or division, this is just another way to denote radicals.
      Hope this helps.
      (2 votes)

Video transcript

- [Voiceover] Let's see if we can figure out what 256 to the four-sevenths power, divided by two to the four-sevenths power is, and like always, pause the video and see if you can figure this out. All right, let's work through this together, and at first you might find this kind of daunting. Especially when you see something like two to the four-sevenths power or is that even, that's not going to be a whole number, how do I, how do I do this, especially without a calculator. And I should've said, do this without a calculator. But then the key is to see that we can use our exponent properties to simplify this a little bit so that we can do this on paper. And the main property that may jump out at you is if I have something, if I have, if I have x to the a power, over y to the a power, this is the same thing as x over y, to the a power. And in our situation right over here, 256 would be x, two would be y, and then a is four-sevenths, so we can rewrite this, this is going to be equal to this is equal to 256, over two, to the four-sevenths power, and so this is nice. We're already able to simplify this, because we know 256 divided by two, is 128. So this is 128 to the four-sevenths power. Now this might also seem a little bit difficult, how do I raise 128 to a fractional power? But we just have to remind ourselves, this is the same thing, this is the same thing as 128 to the one-seventh power. Then raised to the fourth power. We could also view it the other way around, we could say that this is also 128 to the fourth, to the fourth power, and then raise that to the one-seventh, but multiplying 128 four times, that's going to be very computationally intensive, and then you have to find the seventh root of that. That seems pretty difficult, so we don't want to go in that way, but if we can get the smaller number first, what is 128 to the one-seventh power? Then that might be easier to raise to the fourth power. Now when you look at this, and knowing that probably, the question writer in this case, I'm the person who presented it with you is, telling you that you're not going to use a calculator is, it's a pretty good clue that, all right, this is probably going to be a, this is probably going to be something that I can figure out on my own, and you might recognize 128 as a power of two, and maybe two to the seventh is 128, and we can verify that. So let's see, two to the first is two. Four, eight, 16, 32, 64, 128. Two times two is four, times two is eight, times two is 16, times two is 32, times 2 is 64, times two is 128. So, two to the seventh power is equal to 128, or another way of saying this exact same thing is that 128, 128 is equal to or 128 to the one-seventh power, is equal to two. Or you could even say that the seventh root, the seventh root of 128, is equal, is equal to two. So, we can simplify this. This is two, so our whole expression is now just two to the fourth power. Well, that's just two times two, times two, times two. So, that's two to the fourth power. Two to the fourth power, which is just going to be equal to 16. That's two, times two, times two, times two, right over there. And so we're done! This crazy, complicated-looking expression, it is simplified to 16.