If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Logarithmic scale (with Vi Hart)

Vi Hart and Sal talk about how we humans perceive things nonlinearly. Created by Sal Khan.

Want to join the conversation?

  • blobby green style avatar for user jeffreyyuennyc
    Why is this video in Pre-Calculus? :D
    (7 votes)
    Default Khan Academy avatar avatar for user
  • leaf red style avatar for user tude22
    They say we think in logarithmic scale, but it seems to me from the video, we tend to think linearly about things that are in fact logarithmic. Am I just thinking about this the wrong way?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • leafers ultimate style avatar for user Boris Stanchev
      You're not thinking about it the "wrong way." Go back to where they give the piano. All humans naturally think of pitch in a logarithmic scale without realizing it. With each octave we actually have a doubling of the sound frequency, however, when we are listening to the notes being played one after another we think of them incrementing in equally spaced intervals because that's how we're taught to think of numbers for the purposes of counting and basic math.

      When it comes to a certain force pressing up on our skin it's the same way. A German physician by the name of Ernst Weber, who is considered one of the principle founders of experimental psychology was the first to notice this.

      The reason you feel that you think linearly is because we naturally count objects as 1, 2, 3, 4, 5, 6, etc and since we think of each thing we count as distinct, we think of there being an equal distance between each number on the number line. As a result, we base all our mathematics on this. However, the fact that our thinking is not quite like that becomes apparent when we're dealing with large numbers. Sal and Vi show this at around when she asks him how far apart 1,000 and 1,000,000 are on a number line. As it turns out, in our minds, the distance between numbers gets smaller as we count to higher and higher numbers. For example, 2 is twice as big as 1, and there appears to be a huge difference between the two numbers, however, there doesn't seem to be as big of a difference between 20 and 21, even though, we increment by the exact same amount as we did from 1 to 2 to get from 20 to 21.
      (39 votes)
  • piceratops ultimate style avatar for user insuranceshawn
    I love, love, love Khan Academy, but this video needs a take-two.
    (5 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Atsuko Itakura
    Hello Vi and Sal. I needed a little clarification please. So...am I correct in thinking that a logarithmic scale is based on the relativity of where you are making a calculation from?

    It occurred to me when you were using your speaking example. When we are asked to speak louder, we speak louder relative to how loud we were initially talking. If I am talking at a 2 and am asked to speak louder, then I might speak at a 4. If I'm again asked to speak even louder, then I wouldn't adjust based on my original volume (which was at a 2), I'd adjust based on the current 4 to perhaps an 8, because that was still perceived as not loud enough. In that sense, the volume increases exponentially based on the current relative "state?"
    (5 votes)
    Default Khan Academy avatar avatar for user
  • mr pants teal style avatar for user shruthisailesh
    what does this have to do with pre calculus?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • orange juice squid orange style avatar for user Ramana
    Why can't we say "Fundamentally the way we perceive is exponential."?
    Why only logarithmic? Can't it be thought of as 'exponential' too?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • leaf yellow style avatar for user Wogi
    Who is Vi Hart?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • duskpin seed style avatar for user silverryo09
    what is the difference b/w a logarithmic and geometric scale?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • starky sapling style avatar for user Hodorious
    It seems to me that the piano is made based on an exponential scale rather than logarithmic since each octave is twice the frequency as the last.
    (2 votes)
    Default Khan Academy avatar avatar for user
  • cacteye purple style avatar for user Jamie M
    I miss Vi's videos. What a brilliant mind.
    (2 votes)
    Default Khan Academy avatar avatar for user

Video transcript

VI HART: All right. So I'm Vi Hart and I'm here with Sal Khan and-- SAL KHAN: Hello. VI HART: Yeah. We're talking about just how we think about numbers and what is the most natural way to think about them in our everyday lives. SAL KHAN: And Vi said that she was going to test me right now. VI HART: Yeah. All right, can I borrow the pen? SAL KHAN: Yes. Yes. VI HART: I get to use the official pen and screen-- oh wait. [INAUDIBLE] SAL KHAN: No, that's all screen. Yes. VI HART: OK. OK. SAL KHAN: You need training, Vi. VI HART: I need training. Yay. SAL KHAN: It looks like a pizza. VI HART: It's a triangle. SAL KHAN: Right. Where's your test, Vi? VI HART: OK. SAL KHAN: You're diverging. VI HART: I'm sorry. All right, so here's a number line. Regular old number line. No, wait. I want to start at one. All right, we're going to start at one, and we're going to go all the way to a million. And I'm going to give you the pen now, and I'm going to ask, where is 1,000? SAL KHAN: Where is 1,000? Where is 1,000? I see. I see what you're doing. VI HART: So you can think about this logically. SAL KHAN: Yes. Yes. So I'll tell you what went through my brain. My first knee-jerk reaction was to put 1,000 like right over here. That's what I was tempted to do. VI HART: Mhm. SAL KHAN: And then my brain kicked in. VI HART: Right. Yeah. You think of it-- SAL KHAN: My highly-analytical mind. VI HART: Yeah. Because you know there is a correct answer to this problem. We can think, all right, where is 1,000 on the number line related to a million? Well, a million divided by 1,000. SAL KHAN: Is 1,000. VI HART: You want one thousandth. SAL KHAN: Thousandth. Right. So it's not there. I was going to draw it a tenth of the way. No. 1,000 is like there. You barely notice the difference between that and-- VI HART: Yeah. You couldn't even see the difference in thousandths. SAL KHAN: Yes. So this is fascinating. What is this about? Why did I do that? VI HART: Yeah. Why do we think of 1,000 as being much closer to a million than it is? And we do this, actually, all the time. We're not so used to having to think about the difference between 1,000 and a million. But when we're thinking about the difference between 1 and 2, or the difference between 2 and 3, or 1 and 10, we think, 1 and 2. There's a big difference there. 2 is twice what 1 is. SAL KHAN: Yes. It's twice 1. Right. VI HART: And the difference between 9 and 10 is the same distance when you're looking at it at the usual scale. It's 1. SAL KHAN: Right. Right. VI HART: But when we're thinking about real-life things, well, the difference between 9 and 10 isn't so big in any real life situation. SAL KHAN: No. But the difference between 1 and 2 is huge. VI HART: Yeah. SAL KHAN: In real-life it's double. VI HART: Yes. SAL KHAN: Right. VI HART: So now we have to think on a logarithmic scale is what it is. SAL KHAN: Oh. Yes. The old logarithmic scale. So what you're saying is that we, as humans, even though everything we're taught is these linear scales, where we want to say this is 1, and then maybe this is 10, and then this is 20-- even though that's what we're taught, and that's what most of our mathematics, we plot lines and stuff like that. VI HART: Yeah. That's how we draw it out on paper, usually. SAL KHAN: Yes. VI HART: But that doesn't make sense, usually, for how we think about things. Because the difference between 5 gazillion and 5 gazillion and 10 is-- SAL KHAN: Is nothing. Is nothing. VI HART: Nothing. Whereas the difference between 1 and 10 is huge. SAL KHAN: Right, right, right. And so that's why almost the multiple matters more than the absolute distance between the numbers. VI HART: Yeah. SAL KHAN: Absoluately. And that's what the logarithmic scale captures. VI HART: It is. And that's why we see the logarithmic scale in so many things in real life. As a mathemusician, on the piano we see it. SAL KHAN: Yes. VI HART: It's actually the logarithmic scale. So let's get our piano picture out. SAL KHAN: Oh, look at that. There's a piano. VI HART: Yeah. OK. OK. Can I have the pen? SAL KHAN: Here you go. Yes. VI HART: All right. Let's see if I can figure this out. All right. So here we have this C. Let's call it middle C. And here we have this D. And there's a certain distance between these. And then here is this C and this D. And when we're listening to these notes, we think, all right, they're one note apart. This is the same distance here between here and here and here and there. SAL KHAN: Yes. VI HART: But if you look at the actual frequencies, the distances are not the same. This was maybe a bad example, because I don't know the frequency of D, but-- SAL KHAN: No. Well, we could-- VI HART: Well I'll give you an example I can give numbers to, which is maybe the difference between this octave and the difference between this octave. Right? If this is C-- SAL KHAN: Call it x. VI HART: x. SAL KHAN: Whatever the frequency is. VI HART: Right. Yes. This is great. SAL KHAN: It's like 440 kilohertz. I don't know what it is. VI HART: No. A is 440. SAL KHAN: A is 440. VI HART: C is-- SAL KHAN: Well we'll call it x. VI HART: More like, I don't know, let's say 300. SAL KHAN: Yes. VI HART: All right. So if this is 300 or 300x or just x, then this frequency would be 600. SAL KHAN: 600. Right. It doubles. VI HART: It doubles when you go up an octave. And this would be 1,200 up here, this C. We're in a weird scale here. But the difference between here is 300. And the difference between here is 600. But when we're listening to octaves, we feel like the difference between this octave shouldn't be half as much as the difference between these two notes. Right? The distance from an octave should be an octave. Right? SAL KHAN: Right. So fundamentally the way we perceive pitch is logarithmic. VI HART: It's just fundamentally logarithmic. If you want to have all your notes on the piano be right next to each other, instead of having a piano where you have one key for C here, and one key for C here, and the next C is going to be over here. Right? SAL KHAN: Yeah. Twice as far. Yeah. VI HART: And the next C on the piano would have to be like-- SAL KHAN: So if piano manufacturers-- they innately made it based on a logarithmic scale, whether they knew it or not. VI HART: Yeah. Because we think about it on a logarithmic scale. SAL KHAN: They could have made it on a linear scale, and then the keys would just get fatter and fatter as we went to the right. VI HART: Oh, yeah. Fatter keys instead of making them farther apart. SAL KHAN: Someone should make that. VI HART: A fat key piano. SAL KHAN: A linear scale piano. Yes. VI HART: That would be awesome. But that's not how we think of pitch. SAL KHAN: No. It might be hard to play that. VI HART: It would be [? awesome. ?] SAL KHAN: And it's just not pitch. It also even be how we perceive a magnitude of the frequencies. Because we have the decibel scale, which is a logarithmic scale. VI HART: Yeah. There's a lot of natural, intuitive, logarithmic scales. So when we're looking at how loud something is, that's also the difference between how I'm talking now and how I'm talking if I'm a little louder. And we feel like distances between loudness also-- SAL KHAN: Right. VI HART: It's harder to explain. SAL KHAN: We perceive it a lot-- it is harder to explain. But we'll leave it there. VI HART: I don't have any pictures of how loud something is. SAL KHAN: We don't. No. And we don't want to bother people by just getting louder and louder. VI HART: By screaming. SAL KHAN: Yes. VI HART: I can scream at you some more. I think that would be great. SAL KHAN: Right. No. But that's fascinating. Especially this little game here. I'm going to start doing this at the next party I go to. VI HART: Mhm. It's good. And it makes sense. When we're looking at things, the difference between how much $1 million and $10 million is. SAL KHAN: Yes. VI HART: The world follows these kind of rules. SAL KHAN: Right, right, right. Very cool. VI HART: Yeah. SAL KHAN: Awesome.