Main content
Algebra 1
Unit 2: Lesson 3
Analyzing the number of solutions to linear equations- Number of solutions to equations
- Worked example: number of solutions to equations
- Number of solutions to equations
- Creating an equation with no solutions
- Creating an equation with infinitely many solutions
- Number of solutions to equations challenge
© 2023 Khan AcademyTerms of usePrivacy PolicyCookie Notice
Number of solutions to equations
See how some equations have one solution, others have no solutions, and still others have infinite solutions. Created by Sal Khan.
Want to join the conversation?
- Why is it that when the equation works out to be 13=13, 5=5 (or anything else in that pattern) we say that there is an infinite number of solutions?(3 votes)
- 13=13 Is a true statement...that is why.(1 vote)
- Does the same logic work for two variable equations? Is there any video which explains how to find the amount of solutions to two variable equations? Help would be much appreciated and I wish everyone a great day!(10 votes)
- Most 2 variable equations have an infinite set of solutions. Consider linear equations - they create a straight line when you graph them on the coordinate plane. Every point on the line is a solution to the equation.
Hope this helps.(5 votes)
- I don't know if its dumb to ask this, but is sal a teacher?(4 votes)
- Sorry, repost as I posted my first answer in the wrong box.
According to a Wikipedia page about him, Sal is:
"[a]n American educator and the founder of Khan Academy, a free online education platform and an organization with which he has produced over 6,500 video lessons teaching a wide spectrum of academic subjects, originally focusing on mathematics and sciences."
So technically, he is a teacher, but maybe not a conventional classroom one.
Hope that helped!(5 votes)
- What if you replaced the equal sign with a greater than sign, what would it look like? Would it be an infinite solution or stay as no solution(3 votes)
- It won't be a equation at all. That would be a inequality(3 votes)
- Guys! AtI just thought of one solution to make the second equation 2=3 5:18
since 5∞=∞
then 3∞=2∞ makes sense
So we could time both sides by a number which in this equation was x, and x=infinit then this equation has one solution.(2 votes)- Sorry, but it doesn't work. You are treating the equation as if it was 2x=3x (which does have a solution of 0). But, in the equation 2=3, there are no variables that you can substitute into. It is just saying that 2 equal 3. It doesn't. This is a false equation called a contradiction. It has no solution.(5 votes)
- is all real numbers and infinite the same thing?(3 votes)
- Well you could say that because infinity had real numbers and it goes forever, but real numbers is a value that represents a quantity along a continuous line.(3 votes)
- in a response to a question (The sum of 333 consecutive odd numbers is 183183183.
What is the second number in this sequence?) someone said that since it is 3 consecutive odd numbers that each number would be two apart. how did you get this?(2 votes)- Consecutive odd integers must be in order. Here are some examples: 3, 5, 7, 9, etc. What's the pattern? Each number is the prior number plus 2. 5=3+2; 7=5+2; 9=7+2; etc.
Hope this helps.
FYI, search for the lesson on consecutive integers for examples.(4 votes)
- Hi!
I just want to ask if the answer is a infinite number,
how do we actually write it out.
I will appreciate every answer(2 votes)- You do not write anything out, but you simply state that "there are an infinite number of solutions"(2 votes)
- If x=13 that means 13=13 right? Why is that not infinite too? Why is it only one solution?(0 votes)
- An equation with infinite solutions means X = All real numbers. So, you would be able to pick any number for X and the equation would be true. This doesn't work for you equation. If x=13, then the only value that is a valid solution is 13. If you pick another value other than 13, the number would not work.
Hope this helps.(5 votes)
- how to do 2x-8=y into no solution?(2 votes)
- You have a linear equation with 2 variables. It has an infintes set of solutions. It's not possible to make it have no solution. Every point on the line is a solution to the equation.(2 votes)
Video transcript
Determine the
number of solutions for each of these
equations, and they give us three equations right over here. And before I deal with these
equations in particular, let's just remind
ourselves about when we might have one or
infinite or no solutions. You're going to
have one solution if you can, by
solving the equation, come up with something like
x is equal to some number. Let's say x is
equal to-- if I want to say the abstract--
x is equal to a. Or if we actually
were to solve it, we'd get something like x
equals 5 or 10 or negative pi-- whatever it might be. But if you could actually
solve for a specific x, then you have one solution. So this is one solution,
just like that. Now if you go and you try to
manipulate these equations in completely legitimate
ways, but you end up with something crazy
like 3 equals 5, then you have no solutions. And if you just think
about it reasonably, all of these equations
are about finding an x that satisfies this. And if you were to just
keep simplifying it, and you were to get
something like 3 equals 5, and you were to ask
yourself the question is there any x that can somehow
magically make 3 equal 5, no. No x can magically
make 3 equal 5, so there's no way that you could
make this thing be actually true, no matter
which x you pick. So if you get something
very strange like this, this means there's no solution. On the other hand, if you get
something like 5 equals 5-- and I'm just over
using the number 5. It didn't have to
be the number 5. It could be 7 or 10
or 113, whatever. And actually let
me just not use 5, just to make sure that you
don't think it's only for 5. If I just get something,
that something is equal to itself,
which is just going to be true no matter what
x you pick, any x you pick, this would be true for. Well, then you have
an infinite solutions. So with that as a
little bit of a primer, let's try to tackle
these three equations. So over here, let's see. Maybe we could subtract. If we want to get rid of this
2 here on the left hand side, we could subtract
2 from both sides. If we subtract 2
from both sides, we are going to be left
with-- on the left hand side we're going to be
left with negative 7x. And on the right
hand side, you're going to be left with 2x. This is going to
cancel minus 9x. 2x minus 9x, If we simplify
that, that's negative 7x. You get negative 7x is
equal to negative 7x. And you probably see
where this is going. This is already true
for any x that you pick. Negative 7 times that x is going
to be equal to negative 7 times that x. So we already are going
into this scenario. But you're like hey, so
I don't see 13 equals 13. Well, what if you did
something like you divide both sides by negative 7. At this point, what I'm
doing is kind of unnecessary. You already understand that
negative 7 times some number is always going to be
negative 7 times that number. But if we were to do this,
we would get x is equal to x, and then we could subtract
x from both sides. And then you would
get zero equals zero, which is true for
any x that you pick. Zero is always going
to be equal to zero. So any of these
statements are going to be true for any x you pick. So for this equation
right over here, we have an infinite
number of solutions. Let's think about this one
right over here in the middle. So once again, let's try it. I'll do it a little
bit different. I'll add this 2x and this
negative 9x right over there. So we will get negative 7x
plus 3 is equal to negative 7x. So 2x plus 9x is
negative 7x plus 2. Well, let's add-- why don't we
do that in that green color. Let's do that in
that green color. Plus 2, this is 2. Now let's add 7x to both sides. Well if you add 7x to
the left hand side, you're just going to
be left with a 3 there. And if you add 7x to
the right hand side, this is going to go
away and you're just going to be left with a 2 there. So all I did is I added 7x. I added 7x to both
sides of that equation. And now we've got
something nonsensical. I don't care what x you pick,
how magical that x might be. There's no way that that x is
going to make 3 equal to 2. So in this scenario right over
here, we have no solutions. There's no x in the universe
that can satisfy this equation. Now let's try this
third scenario. So once again, maybe we'll
subtract 3 from both sides, just to get rid of
this constant term. So we're going to get negative
7x on the left hand side. On the right hand side, we're
going to have 2x minus 1. And now we can subtract
2x from both sides. To subtract 2x from
both sides, you're going to get-- so
subtracting 2x, you're going to get negative
9x is equal to negative 1. Now you can divide both
sides by negative 9. And you are left with
x is equal to 1/9. So we're in this
scenario right over here. We very explicitly
were able to find an x, x equals 1/9, that
satisfies this equation. So this right over here
has exactly one solution.