If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Linear functions word problem: fuel

Sal is given a verbal description of a real-world relationship involving a truck's fuel consumption, and is asked to draw the graph that represents this relationship.

Want to join the conversation?

  • blobby green style avatar for user kmperero101
    What are Linear functions?
    (6 votes)
    Default Khan Academy avatar avatar for user
    • orange juice squid orange style avatar for user Shawn
      A linear function is when, in its simplest form, there are no variables with exponents greater than 1. A linear function will result in a straight line on a graph that has a slope and a y-intercept. It can be defined by y = ax + b where a is the slope and b is the y-intercept. I hope this helped you.
      (19 votes)
  • blobby green style avatar for user Pree Shee Lah
    What will be my x intercept and y intercept if the question says that the line passes through the points (-3,7) and (5,-1)?
    (8 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Sid Pujara
      Find the slope of the line using the formula m=(y2-y1)/(x2-x1). Find the equation of the line with the formula y-y1=m(x-x1).
      To find the x-intercept, put 0 in place of y in the equation and solve it.
      To find the y-intercept, put 0 in place of x in the equation and solve it.
      So in your case, m=(-1-7)/(5+3) = -8/8 = -1
      Equation: y-7 = -x-3
      => x+y-4=0
      => x=4, y=4
      Hope this helped
      (10 votes)
  • piceratops seed style avatar for user Brouwer, Izzy
    i am confused i dont get y
    (12 votes)
    Default Khan Academy avatar avatar for user
  • aqualine seed style avatar for user ranoosh
    Enrique is driving to Texas. he travels at 70 kilometers per hour for 2 hours, and 63 kilometers per hour for 5 hours. over the 7 hour time period what was Enrique's average speed?

    can someone please explain to me this problem.
    (6 votes)
    Default Khan Academy avatar avatar for user
  • purple pi purple style avatar for user louisaandgreta
    So the equation for this problem would be

    y=400-0.8x ?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • male robot hal style avatar for user acha Zeng
    I have to say this kind of linear functions just like prediction , even though something not really happen but you can calculate the result like how far can a car drive consumes all the fuel in tank.
    Every value in the domain has a corresponding value in range , people just find out the relationship between them and use the algorithm and variables to describe this relationship, but sometimes data actually is not so "consecutive", instead, it's kind of discreate
    (5 votes)
    Default Khan Academy avatar avatar for user
    • mr pink green style avatar for user David Severin
      But even with your example of cars and gas, while it is continuous, in real life, you would not say how far can you drive with 8.34349683 gallons of gas, while you could calculate, but it has no practical purpose. So probably the smallest increment that would be used is tenths of a gallon which would create a discrete graph.
      (2 votes)
  • blobby green style avatar for user Ridhima Gupta
    I can't understand this 🤷
    (4 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Tristan Upshaw
    I need help because it is a little hard :(
    (4 votes)
    Default Khan Academy avatar avatar for user
  • winston baby style avatar for user Meerah Tahir
    For the fuel and kilometer question in the example can we write the question in y-intercept form like this Y=400-0.8x
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user nsengimana-j
    i dont know how to use a slope
    (3 votes)
    Default Khan Academy avatar avatar for user
    • duskpin ultimate style avatar for user Victor
      Slope is the m in the form y = mx + b. In order to find your slope, you'll need two points on a Cartesian Plane. The formula to find slope is usually (y2 - y1)/(x2 - x1). However, (y1 - y2)/(x1 - x2) works as well. It depends on what you prefer. Anyways, when you have your two coordinates, plug in both y values into the y slot and make sure you do it in the same order for your x values, otherwise you'll get a wrong answer. If you have any more question, feel free to ask!
      (2 votes)

Video transcript

- [Voiceover] Karl filled up the tank of his truck with 400 liters of fuel and set out to deliver a shipment of bananas to Alaska. The truck consumed 0.8 liters of fuel or eight-tenths of a liter of fuel for each kilometer driven. Graph the amount of fuel remaining in the truck's tank in liters as a function of distance driven in kilometers. And right over here we have, we have a graph where we have a coordinate plane where our horizontal coordinate is distance in kilometers, and our vertical, our vertical axis is fuel in liters. So we can define the line by moving these two points around, because two points define a line. And so, let's just think about two points that we could figure out. Can we figure out the fuel at two different distances, and then that will help us define the line. Well, the first thing that we might want to think about is, well, what about before we've traveled at all? That might be the easy thing to figure out. What was the amount of fuel in the tank when we haven't traveled at all? And they tell us that in this passage. And I encourage you to pause the video and think about that. Well, they tell us Karl filled up the tank of his truck with 400 liters of fuel and then set out to deliver a shipment of bananas. So before he had driven at all, right after he'd filled his tank, he had 400 liters of fuel. So we could say when distance was zero kilometers, he had 400 liters of fuel. So we have one point on that line. Now we gotta think about where we might want to put, where we want to put this other point. And the way I think about it is, well, let's just, we know he's consuming, he's consuming eight-tenths of a liter of fuel for each kilometer driven. But they don't have, you know, we're not going by one kilometer, two kilometers. They're going by, this is like 50 kilometers, 100 kilometers. So let's think about how much fuel he would have consumed after driving 100 kilometers, and if he consumed that much, we would subtract that from the amount of fuel he started with, and then that would tell us, that would tell us where this point would be. It's going to be some place over here, and it's going to be, it's going to be below 400, 'cause we're consuming fuel. Fuel should be going down as distance increases. This should be a downward-sloping line. So I have my, I have my scratchpad here. Let me, let me get it out. And I have the same question there. It just gives us all the same information. But what I want to figure out is, so we already know, we already know that. So we have distance, distance. Let me, I'll just write. Actually, let me just write the whole thing. Give myself a little bit more space. Distance in kilometers. Distance in kilometers. And then you have fuel, you have fuel in liters. You have fuel in liters. And we already figured out that before he got on, right after he filled up his tank but before he set out on his trip, at distance zero kilometers he had 400 liters of fuel. And we've already actually plotted that. But then we said, well what happens at a hundred kilometers? At a hundred kilometers, how much fuel will he have? Well, they tell us that he consumes 0.8 liters of fuel for each kilometer. So, 0.8 liters per kilometer, and then we just multiply that times the number of kilometers. So, times 100 kilometers. The units work out, kilometers divided by kilometers. We're just going to be left with liters, and then we multiply the numbers. Eight-tenths of a hundred, well that's going to be equal to 80, and the units are liters, 80 liters. So at a distance of a hundred kilometers, he's going to have consumed, right, let me be careful here. He's going to have consumed 80 liters. He's going to have consumed 80 liters. So the fuel, the fuel is actually going to be what he started with, what he started with minus how much he consumed. So it's going to be minus 0.8, and if we want to write the units there. I might as well, so, you know, this is liters right over here. This is 400 liters. And I can write this kilometers, kilometers. It's going to be 400 liters minus 0.8 liters per kilometer times, times, let me make that clear, times 100, times 100 kilometers. And same thing, kilometers divided by kilometers, and we are left with 400 liters minus 0.8 liters times 100. Well, that's just going to be equal to 400 liters, which is how much he started with, minus eight-tenths of a hundred is 80, and the units left is 80 liters. So 400 liters minus 80 liters, that's going to be 320 liters. So when he has traveled a hundred kilometers, he will have 320 liters left in his tank. So let's plot that. So when he has traveled a hundred kilometers, actually, I just randomly had put the point there, he is going to have 320 liters left in his tank. And just like that, we have plotted the line that showed how much fuel he has in his tank as a function of, as a function of distance traveled. And you can even see from this that he's going to run out of fuel at the 500-kilometer mark.