If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Simplifying higher-index roots

Multiple examples of simplifications of higher-index radicals. For example, simplifying ⁵√96 as 2⁵√3. Created by Sal Khan and CK-12 Foundation.

Want to join the conversation?

  • piceratops ultimate style avatar for user Paschal Curlin
    Can someone help me with something on the exercise

    I understand it but I don't understand how to fill in the blank spots. The problem is this

    They had the square root of 100 and it said siplify. 10 right but there are 2 blank spots what do I do?

    my question is answered! thanks! feel free to vote up if you think it was a good question!
    (90 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Ed Keith
    What is the principal cube root of -27?

    I would expect it to be -3, but have been told it is actually 1.5+2.59808i. I can see that that is a solution to x^(1/3) = -27, but why is it considered 'principal root' rather than -3?
    (24 votes)
    Default Khan Academy avatar avatar for user
  • starky ultimate style avatar for user BossChomp
    Is there a faster way to do prime factorization
    (7 votes)
    Default Khan Academy avatar avatar for user
    • male robot hal style avatar for user Wudaifu
      To do "Prime Factorization", by definition, you are factoring all the way down as far as you can go, so NO, there is no faster way. However, sometimes you can recognize that a number doesn't have to be factored all the way down to its prime factors to be simplified. For example, if you were asked to simplify the square root of 96 (instead of the 5th root as in the problem above), you might recognize that 96 = 16 X 6 and that 16 is itself a perfect square (4 X 4). So, you wouldn't have to factor 96 all the way down to its prime factors of 2X2X2X2X2X3. You could take 4 (the square root of 16) out from underneath the radical sign and write the square root of 96 as 4 times the square root of 6. Hope this helps. Good Luck.
      (11 votes)
  • aqualine seed style avatar for user douglas
    At sal says the sixth root of x^6 is just x. Later (at ) he writes the full expression simplified as:

    2x * x^(1/3)

    My question is: shouldn't it be the absolute value of x instead of x?

    2|x| * x^(1/3) instead of 2x * x^(1/3)

    What if x is negative? When should I take the absolute value like explained on https://www.khanacademy.org/math/algebra/exponent-equations/simplifying-radical-expressions/v/simplifying-square-roots at ?
    (7 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user Alec!
    Hi! I'm in 5 th grade and I still don't get how to do this for most simplifying radicals problems. I have to do this next year in advanced math!!! Help!
    (2 votes)
    Default Khan Academy avatar avatar for user
  • leaf blue style avatar for user allie.murdock
    I have skill quizes every week in geometry where we are tested on algebra material one problem that always gets me are problems like the following: *∛3x-6=3* how would i solve problems like these or which segment should i look for tutorials on?
    (3 votes)
    Default Khan Academy avatar avatar for user
    • old spice man green style avatar for user Petrie (Peter S. Asiain III)
      Basically we just need to isolate the missing variable x to the other side of an equation.
      Keep in mind though that ∛3x-6=3 and ∛(3x)-6=3 are different from one another
      Let me show you how to do it.
      If we have ∛3x-6=3 then.......
      ∛3x-6=3 → This will be our original equation.
      ∛3x=9 → I added 6 to both sides of the equation
      x=9/∛3 → I divided both sides of the equation by ∛3 and there's our answer!
      But if what you meant was ∛(3x)-6=3 instead of ∛3x-6=3 then......
      ∛(3x)-6=3 → This will be our original equation.
      ∛(3x)=9 → I added 6 to both sides of the equation
      3x=9^3 → I raised both sides of the equation by 3
      3x=729 → This is what I got
      x=243 → I divided both sides of the equation by 3 and there's our answer for this equation.
      (4 votes)
  • starky ultimate style avatar for user CR_DragoUchiha
    at the time in the video, i don't understand what he was doing? Can anyone help me please!
    (3 votes)
    Default Khan Academy avatar avatar for user
    • purple pi purple style avatar for user doctorfoxphd
      In this section at , he is finding the 4th root of 16 or ∜16
      The 4th root of something is a number multiplied by itself 4 times to equal that something

      Well, at that time after factoring 16, he has ∜2∙2∙2∙2 written and he is talking about finding the 4th root of 2 times 2 times 2 times 2
      We are looking for a factor that occurs 4 times, and there it is! We can see that 2 is a factor of 16 four different times, so
      ∜16 = ∜2∙2∙2∙2 = ∜2⁴ = 2

      And that is how he got the 2
      (3 votes)
  • blobby green style avatar for user Monte Peace
    In the last example when it was simplified to 2x x^1/3 should the x be |x|?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf green style avatar for user ArDeeJ
      Nope.At first it may seem so but no.

      We start with (64x^8)^(1/6). Because x is raised to an even power, it will always be non-negative.

      We end up with 2x(x)^(1/3). Both x'es are raised to an odd power: therefore if x is negative, so are they. But then we have two negatives, which cancel out: so the second expression is also always positive and fully equal to the first one.
      (2 votes)
  • aqualine ultimate style avatar for user Tanaw9
    We know that the sqrt of 9=3 but then is it possible that the sqrt of 9 is -3 since,
    -3*-3= +9
    pls answer...
    (2 votes)
    Default Khan Academy avatar avatar for user
  • old spice man green style avatar for user Shreya Addepalli
    Why does he keep on using two when finding the prime factorization of it? Do you really have to do it that way?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • leaf blue style avatar for user Stefen
      The process of prime factorization starts by dividing by the smallest prime number, which is 2. If you can, keep doing it until you can't. At that point look to successively larger primes, 3, 5, 7, 11 . . . .
      EG
      12 = 2*2*3 since 12/2=6 6/2=3
      22 = 2*11 since 22/2=11
      21 = 3*7 since 21/3=7
      385 = 5*7*11 since 385/5=77 and 77/7=11
      As you can see, when you can start on 2, do so, otherwise start with the next smallest prime - this is the convention for prime factorization.
      If you choose not to, you will still get the correct answer, but you might also overlook something, so best to follow convention:
      24 24/8=6, 6/3=2 so 8*3*2, BUT 8 can still be factored.
      (2 votes)

Video transcript

So far, when we were dealing with radicals we've only been using the square root. We've seen that if I write a radical sign like this and put a 9 under it, this means the principal square root of 9, which is positive 3. Or you could view it as the positive square root of 9. Now, what's implicit when we write it like this is that I'm taking the square root. So I could have also written it like this. I could have also written the radical sign like this and written this index 2 here, which means the square root, the principal square root of 9. Find me something that if I square that something, I get 9. And the radical sign doesn't just have to apply to a square root. You can change the index here and then take an arbitrary root of a number. So for example, if I were to ask you, what-- You could imagine this is called the cube root, or you could call it the third root of 27. What is this? Well, this is some number that if I take it to the third power, I'd get 27. Well, the only number that if you take it to the third power, you get 27 is equal to 3. 3 times 3 times 3 is equal to 27. 9 times 3, 27. So likewise, let me just do one more. So if I have 16-- I'll do it in a different color. If I have 16 and I want to take the fourth root of 16, what number times itself 4 times is equal to 16? And if it doesn't pop out at you immediately, you can actually just do a prime factorization of 16 to figure it out. Let's see. 16 is 2 times 8. 8 is 2 times 4. 4 is 2 times 2. So this is equal to the fourth root of 2 times 2 times 2 times 2. You have these four 2's here. Well, I have four 2's being multiplied, so the fourth root of this must be equal to 2. And you could also view this as kind of the fourth principal root because if these were all negative 2's, it would also work. Just like you have multiple square roots, you have multiple fourth roots. But the radical sign implies the principal root. Now, with that said, we've simplified traditional square roots before. Now we should hopefully be able to simplify radicals with higher power roots. So let's try a couple. Let's say I want to simplify this expression. The fifth root of 96. So like I said before, let's just factor this right here. So 96 is 2 times 48. Which is 2 times 24. Which is 2 times 12. Which is 2 times 6. Which is 2 times 3. So this is equal to the fifth root of 2 times 2 times 2 times 2 times 2. Times 3. Or another way you could view it, is you could view it to a fractional power. You could view it to a fractional power. We've talked about that already. This is the same thing as 2 times 2 times 2 times 2 times 2 times 3 to the 1/5 power. Let me make this clear. Having an nth root of some number is equivalent to taking that number to the 1/n power. These are equivalent statements right here. So if you're taking this to the 1/5 power, this is the same thing as taking 2 times 2 times 2 times 2 times 2 to the 1/5. Times 3 to the 1/5. Now I have something that's multiplied. I have 2 multiplied by itself 5 times. And I'm taking that to the 1/5. Well, the 1/5 power of this is going to be 2. Or the fifth root of this is just going to be 2. So this is going to be a 2 right here. And this is going to be 3 to the 1/5 power. 2 times 3 to the 1/5, which is this simplified about as much as you can simplify it. But if we want to keep in radical form, we could write it as 2 times the fifth root 3 just like that. Let's try another one. Let me put some variables in there. Let's say we wanted to simplify the sixth root of 64 times x to the eighth. So let's do 64 first. 64 is equal to 2 times 32, which is 2 times 16. Which is 2 times 8. Which is 2 times 4. Which is 2 times 2. So we have 1, 2, 3, 4, 5, 6. So it's essentially 2 to the sixth power. So this is equivalent to the sixth root of 2 to the sixth-- that's what 64 is --times x to the eighth power. Now, the sixth root of 2 to the sixth, that's pretty straightforward. So this part right here is just going to be equal to 2. That's going to be 2 times the sixth root of x to the eighth power. And how can we simplify this? Well, x to the eighth power, that's the same thing as x to the sixth power times x squared. You have the same base, you would add the exponents. This is the same thing as x to the eighth. So this is going to be equal to 2 times the sixth root of x to the sixth times x squared. And the sixth root, this part right here, the sixth root of x to the sixth, that's just x. So this is going to be equal to 2 times x times the sixth root of x squared. Now, we can simplify this even more if you really think about. Remember, this expression right here, this is the exact same thing as x squared to the 1/6 power. And if you remember your exponent properties, when you raise something to an exponent, and then raise that to an exponent, that's equivalent to x to the 2 times 1/6 power. Or-- let me write this --2 times 1/6 power, which is the same thing-- Let me not forget to write my 2x there. So I have a 2x there and a 2x there. And this is the same thing as 2x-- it's the same 2x there --times x to the 2/6. Or, if we want to write that in most simple form or lowest common form, you get 2x times x to the-- What do you have here? x to the 1/3. So if you want to write it in radical form, you could write this is equal to 2 times 2x times the third root of x. Or, the other way to think about it, you could just say-- So we could just go from this point right here. We could write this. We could ignore this, what we did before. And we could say, this is the same thing as 2 times x to the eighth to the 1/6 power. x to the eighth to the 1/6 power. So this is equal to 2 times x to the-- 8 times 1/6 --8/6 power. Now we can reduce that fraction. That's going to be 2 times x to the 4/3 power. And this and this are completely equivalent. Why is that? Because we have 2 times x or 2 times x to the first power times x to the 1/3 power. You add 1 to 1/3, you get 4/3. So hopefully you found this little tutorial on higher power radicals interesting. And I think it is useful to kind of see it in prime factor form and realize, oh, if I'm taking the sixth root, I have to find a prime factor that shows up at least six times. And then I could figure out that's 2 to the sixth. Anyway, hopefully you found this mildly useful.