If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Count outcomes using tree diagram

Tree diagrams display all the possible outcomes of an event. Each branch in a tree diagram represents a possible outcome. Tree diagrams can be used to find the number of possible outcomes and calculate the probability of possible outcomes. Created by Sal Khan.

Want to join the conversation?

  • piceratops ultimate style avatar for user truman  runyan
    What if all actions aren't equally likely? Does the diagram not work for those, or is there a way for the diagram to represent unequal outcomes?
    (34 votes)
    Default Khan Academy avatar avatar for user
  • mr pants teal style avatar for user Wrath Of Academy
    The tree diagram seems so unnecessary here. You can just take the product of the outcomes and immediately see the 8 possibilities. Is there a more realistic scenario that shows why you would want to use a tree diagram?
    (7 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Dani Shmait
      Tree diagrams are best used to facilitate the understanding and visualization of a probility including problem in which the number of equally likely outcomes decreases each time
      For example:What is the posibility of choosing 2 red balls individually & consecutively from a bag of 3 blue balls and 2 red balls.?
      Answer: first,the possibility of choosing a red ball would be 2/5. Then,since we didn't put the red ball back,the possibilty of choosing another red ball would be 1/4. So, 2/5*1/4 = 2/20 = 1/10
      Hope this helped !
      (47 votes)
  • piceratops tree style avatar for user desmond.pearlz
    This man explain extremely complicated concepts daily and has made hundreds of videos for years, and yet the hardest part is "changing colors" ?
    (9 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user ErkaDerka
    who thinks for these concepts?? we dont even use these in REAL life!! but you did great Sal, keep up the good work
    (4 votes)
    Default Khan Academy avatar avatar for user
  • duskpin sapling style avatar for user Jeremy
    I can't seem to understand how is the intuition behind outcome counting related to permutation. Could anyone explain?
    (4 votes)
    Default Khan Academy avatar avatar for user
    • piceratops tree style avatar for user Karenminator
      I don't see the direct relation either, since permutations is about order of the outcomes. In this example order is not important, just getting 1 possible outcome out of 8 possibilities.
      But I'm assuming this is just and introduction to the use of tree diagram to count outcomes, which eventually will be useful to better understand what permutations are about...
      (4 votes)
  • blobby green style avatar for user arshdeep singh
    my teacher taught me about a different probability tree diagram test but I didn't understand properly. This was a simple one. :/
    (4 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user Shreyansh M.
    transcript: red, blue, green, white
    real life, red, blue, greeeeeeeeeee...eeeen, white
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Sally Sue
    Can someone please help me! I’m not sure why I’m struggling so bad with this problem! “A stage manager wants to seat important guest in the front row. She would like to seat a diplomat in the first seat. A singer in the 2nd seat, and a movie director in the 3rd seat. If there are 3 diplomats, 2 singers, and 2 directors, how many different front row plans are possible? The answer given in 3*2*2*4*3*2*1 .. I don’t understand where the 4 3 2 1 are coming from?
    (2 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user sanquinetwright16
    still confused. im going to youtube
    (2 votes)
    Default Khan Academy avatar avatar for user
  • mr pink orange style avatar for user siddharth.chalasani
    I was wondering what would happen if you related this into a larger gathering of data. Is there any formula that will directly give us a formula. In terms of x and y, also, how does data progress through the said tree diagram.
    (1 vote)
    Default Khan Academy avatar avatar for user
    • piceratops tree style avatar for user Karenminator
      It would depend on the specifications of the result you are looking for. Whether order or repetition are important or not. In this example, since order or repetition are not important to get one result out of the rest, it would be by multiplying all the factors. And then you get the number of the total possibilities.
      2 engines by 4 colors = 8 possibilities (or mixes).

      Hope this helps.
      (2 votes)

Video transcript

Let's say that I've just won some type of contest at a car dealership, and they're going to give me a brand new car. And in deciding which car they give me, they're first going to randomly select the engine type. So the engine will come in two different varieties. It'll either be a four-cylinder or a six-cylinder engine. And they're literally just going to flip a fair coin to decide whether I get a four-cylinder engine or a six-cylinder engine. Then they're going to pick the color. And there's four different colors that the cars come in. So I'll write color in a neutral color. So you could get a red car. That's not red. Let me do that in actual red color, or close to red. You could get a red car, you could get a blue car, you could get a green car, or you could get a white car. And once again, they're going to have the red, blue, green, and white in little slips of paper in a bowl and they're just going to pick one of them out. So all of these are equally likely. So given this, that they're just going to flip a coin to pick the engine, and that all of these, the colors all equally likely, I want to think about the probability of getting a six-cylinder white car. So I encourage you to pause the video and think about it on your own. Well, one way to think about this is, well, what are all the equally likely possible outcomes? And then which of those match six-cylinder white car? Well, first, we could think about the engine decision. We're either going to get a four-cylinder engine. So the first decision is the engine. You could view it that way. You're either going to get a four-cylinder engine, or you're going to get a six-cylinder engine. Now, if you got a four-cylinder engine, you're either going to get red, blue, green, or white. And if you've got a six-cylinder engine, once again, you're either going to get red, blue-- I think you see where this is going. That's not blue. Red, blue, green, or white. So how many possible outcomes are there? Well, you could just count. You could kind of say, the leaves of this tree diagram-- one, two, three, four, five, six, seven, eight possible outcomes. And that makes sense. You have two possible engines times four possible colors. You see that right here-- one group of four, two groups of four. So this outcome right here is a four-cylinder blue car. And this outcome over here is a six-cylinder green car. So there's eight equally possible outcomes. And which outcome matches the one that we, I guess, are hoping for, the white six-cylinder car? Well, that's this one right over here. It's one of eight equally likely events. So we have a 1/8 probability. This wasn't the only way that we could have drawn the tree diagram. We could have thought about color as the first row of this tree. So we could have said, look, we're either going to get a-- let me do it down here, so I have a little more space-- we're either going to get a red, a blue-- that's not blue. Changing colors is the hard part. A blue, a green, or a white car. And then for each of those colors, I'm either going to get a four-cylinder or a six-cylinder engine. So it's either going to be four or six. This would be another way of drawing a tree diagram to represent all of the outcomes. So what is this outcome right over here? This is a six-cylinder red car. This is a four-cylinder blue car right over here. Which is the one that we care about? White six-cylinder car? That's this outcome right over here. Once again, you see you have eight equally likely outcomes. And that happens because you have four possible colors. And for each of those four possible colors, you have two different engine types.