If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Multiplying mixed numbers

Multiplying mixed numbers is similar to multiplying whole numbers, except that you have to account for the fractional parts as well. By converting mixed numbers into improper fractions, you can multiply the two numbers together in a straightforward way. Once you have the product as an improper fraction, you can convert it back into a mixed number. Created by Sal Khan and Monterey Institute for Technology and Education.

Video transcript

Multiply 1 and 3/4 times 7 and 1/5. Simplify your answer and write it as a mixed fraction. So the first thing we want to do is rewrite each of these mixed numbers as improper fractions. It's very difficult, or at least it's not easy for me, to directly multiply mixed numbers. One can do it, but it's much easier if you just make them improper fractions. So let's convert each of them. So 1 and 3/4 is equal to-- it's still going to be over 4, so you're still going to have the same denominator, but your numerator as an improper fraction is going to be 4 times 1 plus 3. And the reason why this makes sense is 1 is 4/4, or 1 is 4 times 1 fourths, right? 1 is the same thing as 4/4, and then you have three more fourths, so 4/4 plus 3/4 will give you 7/4. So that's the same thing as 1 and 3/4. Now, let's do 7 and 1/5. Same exact process. We're going to still be talking in terms of fifths. That's going to be the denominator. You take 5 times 7, because think about it. 7 is the same thing as 35/5. So you take 5 times 7 plus this numerator right here. So 7 is 35/5, then you have one more fifth, so you're going to have 35 plus 1, which is equal to 36/5. So this product is the exact same thing as taking the product of 7/4 times 36/5. And we could multiply it out right now. Take the 7 times 36 as our new numerator, 4 times 5 as our new denominator, but that'll give us large numbers. I can't multiply 7 and 36 in my head, or I can't do it too easily. So let's see if we can simplify this first. Both our numerator and our denominator have numbers that are divisible by 4, so let's divide both the numerator and the denominator by 4. So in the numerator, we can divide the 36 by 4 and get 9. If you divide something in the numerator by 4, you need to divide something in the denominator by 4, and the 4 is the obvious guy, so 4 divided by 4 is 1. So now this becomes 7 times 9, and what's the 7 times 9? It's 63, over 1 times 5. So now we have our answer as an improper fraction, but they want it as a mixed number or as a mixed fraction. So what are 63/5? So to figure that out-- let me pick a nice color here-- we take 5 into 63. 5 goes into 6 one time. 1 times 5 is 5. You subtract. 6 minus 5 is 1. Bring down the 3. 5 goes into 13 two times. And you could have immediately said 5 goes into 63 twelve times, but this way, at least to me, it's a little bit more obvious. And then 2 times 5 is 12, and then we have sorry! 2 times 5 is 10. That tells you not to switch gears in the middle of a math problem. 2 times 5 is 10, and then you subtract, and you have a remainder of 3. So 63/5 is the same thing as 12 wholes and 3 left over, or 3/5 left over. And if you wanted to go back from this to that, just think: 12 is the same thing as 60 fifths, or 60/5. 60/5 plus 3/5 is 63/5, so these two things are the same thing. These two things are equivalent. This is as an improper fraction. This is as a mixed number or a mixed fraction. But this is our answer right there: 12 and 3/5.