If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Voltage as an intensive property

Demonstrating that voltage is an intensive property by calculating the voltage and change in Gibbs free energy for a half reaction. 

Want to join the conversation?

  • male robot donald style avatar for user Sid Grand
    But when you calculated the Standard Free Energy change for 2 moles of At you just multiplied it by 2! This is means that you actually considered the Voltage to be the same as before. After that you tried to prove that the Voltage was the same as before! Is that wrong? Because according to mathematics I don't find it to be correct.
    (19 votes)
    Default Khan Academy avatar avatar for user
    • aqualine ultimate style avatar for user Gala Balaguer
      I was confused by this proof too because we considered voltage to be the same as before from the beginning, as you said (ie. multiplying the standard free energy by 2)

      The math is right, but here's another way of "proving" voltage isn't affected by the number of mols: Since voltage is a change of potential, and potential is the amount of work done on a single point charge by an electric field, voltage won't change with number of point charges because it represents a single point charge in an electric field. Voltage is not affected by the number of e- moved because it represents only one point charge.

      Hope I could help :D
      (23 votes)
  • female robot grace style avatar for user Anna
    What if you have 2 moles of 1 substance and 1 mole of another in a voltaic cell and thus twice the number of electrons sent? Would the voltage double?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • purple pi purple style avatar for user Vlad Buravetz
    How can you connect it with Gibbs free energy, if standard potential is something we decided by convention? It is just comparing with hydrogen electrode has this potential, with another it will be else.
    (4 votes)
    Default Khan Academy avatar avatar for user
  • leaf green style avatar for user Sidharth Gat
    Where did ∆G=-nF€° came from? It doesn't seem that I missed any video or article . I'm following these electrochemistry tutorials from chemistry(science).
    (2 votes)
    Default Khan Academy avatar avatar for user
  • male robot donald style avatar for user Cobra Coder
    This is making it sound like if you were to put two batteries together, it would still be the same voltage as one battery. Is that correct?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user manpreet singh
    here you are saying that voltage is an intensive property but in nernst you considered the effect of concentration on potential. this is confusing .
    (1 vote)
    Default Khan Academy avatar avatar for user
  • leaf green style avatar for user chinna.chilukuri
    If voltage is an intensive property then why do we have nernst equation. Which relates the voltage in terms of concentrations?
    (1 vote)
    Default Khan Academy avatar avatar for user
  • orange juice squid orange style avatar for user Juan Eduardo Ynsil Alfaro
    Ok, I have a lot of questions now.
    I know that Gibbs free energy is used to calculate if a reaction happens spontaneously, but does it have any physical significance?

    What is standard Gibbs free energy or Delta G naught? Is it related to the equilibrium constant in some way?

    What is exactly the standard electrode potential? I wonder why is constant, because potential should be affected by position with respect to the charges. Is using a galvanic cell and a voltimeter the only way to measure it?

    Is standard electrode potential dependent on electronegativity?

    Why is standard Gibbs energy related to standard electric potential as is shown in the formula in this video?
    (0 votes)
    Default Khan Academy avatar avatar for user

Video transcript

- [Voiceover] When you are working with standard reduction potentials, it's important to realize that voltage is an intensive property. And by the end of the video you'll understand what I mean by the word "intensive." We're gonna use this first half reaction here as an example. So this is the reduction of silver ion to silver metal, so we have Ag+ plus an electron gives us solid silver. The standard reduction potential is positive .80 volts for this half reaction. And we're gonna start by calculating the standard change in free energy. So from an earlier video, we know if we have the voltage, we can find the standard change in free energy Delta G zero. So for this half reaction to be equal to negative, remember that "n" is the number of moles of electrons. And here we have one mole of electrons. So we have one mole, so we plug that into our equation. Next, we have F which is Faraday's constant. And from an earlier video we know that's 96,500 coulombs per mole, so it's the charge of one mole of electrons. We need to multiply that by the voltage which was .80. Instead of writing "volts," I'm gonna write "joules per coulomb" here, so we can see our units cancel. So moles of electrons cancels out charge, coulombs cancels out. And we should get our answer in terms of joules. So this is equal to negative. And let's figure out what it is. This'd be 1 times 96,500 times .80, and it should be the negative of that. So -77,200 joules, which I'll just say is -77 kilojoules. So we get -77 kilojoules is the change in free energy that accompanies the formation of one mole of silver. What about if we wanted to form two moles of silver? So we need to multiply everything in our half reaction by 2, so we get 2Ag+. So two moles of silver ions, plus two moles of electrons should give us two moles of solid silver. What would be the standard change in free energy that accompanies the formation of two moles of solid silver? Let me change colors here. If this is the standard change in free energy for the formation of one mole of solid silver, then we should just be able to multiply that number by two, right? So -77 kilojoules times 2 gives us -154 kilojoules. So that's the standard change in free energy that accompanies the formation of two moles of silver. So, free energy is what's called an extensive property. So, it depends on how much you're dealing with here. So, we're dealing with two moles of electrons and the formation of two moles of silver. So, we have to change the standard change in free energy accordingly. What about the voltage? So, we have our standard change in free energy. Let's use this equation again to solve for the voltage. So we're gonna plug in -154 kilojoules in for our standard change in free energy, and we need to make that into joules, that's -154,000 joules. And that's equal to, let me change colors again here. This would be equal to negative, so we have the negative sign. And then "n" is number of moles of electrons. Well now we're saying two moles of electrons, so this'd be -2 here. And then multiply that by Faraday's constant. So we have Faraday's constant which is 96,500. And then we can solve for the voltage. So we can solve for E zero. So let's plug that in on our calculator. We have -154,000, right? And we need to divide that by -2. And then divide that by Faraday's constant. So 96,500 which gives us a voltage of .80. So if you round that we get a voltage of .80 volts. So it's the same voltage to form two moles of silver as it was to form one mole of silver. Let me highlight that, so I'm let me change colors here. So we had a voltage of .80 volts to form two moles of silver. That's the same voltage to form one mole of silver. So, voltage is an intensive property, it's the same. It doesn't matter how much silver you're forming, how many moles of electrons you're using, the voltage is the same. And it's important to remember that when you're doing your standard reduction potentials, because if you need to do something like we did up here, multiply a half reaction by 2, you don't multiply the voltage by 2. because voltage is an intensive property.