If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Differences in translation between prokaryotes and eukaryotes

The process of mRNA translation differs between prokaryotes and eukaryotes. Prokaryotic mRNA has a Shine-Dalgarno sequence for ribosome binding, while eukaryotic mRNA has a 5' cap and poly-A tail for protection and ribosome binding. The first amino acid also differs: formylmethionine in prokaryotes and methionine in eukaryotes. Created by Efrat Bruck.

Want to join the conversation?

  • leafers tree style avatar for user Ryan
    What is the function of the shine-delgarno region and why is it only in prokaryotic cells?
    (15 votes)
    Default Khan Academy avatar avatar for user
  • primosaur sapling style avatar for user Luke
    Can translation also occur in the rough endoplasmic reticulum because doesn't it also contain ribosomes?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • female robot grace style avatar for user Anna
    but what if friendly bacteria that produce vitamins are lysed by some bacteriophage? This would produce an unneeded immune response since:

    1) The bacteria that was killed was beneficial and the fission rate is faster
    and
    2) Bacteriophages do not infect eukaryotic cells so they are to us eukaryotes a harmless virus.
    (5 votes)
    Default Khan Academy avatar avatar for user
  • mr pants teal style avatar for user frehman
    When she says the ribosome binds to the 5'-cap, does that really mean the small subunit binds? I thought that the large subunit doesn't bind until the small subunit + tRNA with methionine have found the start codon. Please clarify! Thanks! :)
    (7 votes)
    Default Khan Academy avatar avatar for user
  • old spice man green style avatar for user FG
    What about splicing? Does it happen before all of this??
    (3 votes)
    Default Khan Academy avatar avatar for user
  • leaf green style avatar for user hurriyak
    I learned that replication or transcription only occur 3' to 5', that means ribosomes can only add new nitrogenous bases on the 3' end. But then how come ribosome attach to 5' end and continue towards 3' end? If it is anti-shia parallel than doesn't it mean that it is adding on the 5' side of the new mRna??
    (3 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user Anthony Thomas
      You're mixing up a few things here. First off, mRNA is transcribed in the 5' to 3' direction. This means that RNA polymerase reads the template DNA strand in the 3' to 5' direction in order to build the mRNA strand in the 5' to 3' direction.

      Nitrogenous bases are one of the three groups that make up a nucleotide (along with a pentose sugar and a phosphate group) and do not need to be added on during transcription (nucleotides do). Ribosomes do not add nucleotides to the growing mRNA molecule, RNA polymerase does. Ribosomes are involved in translation, converting the mRNA into a polypeptide chain.
      (7 votes)
  • hopper jumping style avatar for user Harry Potter
    If your gut bacteria are prokaryotic, does your body attack those cells when they release Fmet?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user akbaseyda
    Why you said non-coding region after 5'cap and after stop codon? There shouldn't be any introns (non coding regions) on mRNA after processing.
    (4 votes)
    Default Khan Academy avatar avatar for user
  • leafers seed style avatar for user Rosol Hashim
    how come there is 3'-poly A while in my Princeton review biology book, it says that 3' poly A marks end of TRANSCRIPTION NOT translation.
    (3 votes)
    Default Khan Academy avatar avatar for user
    • leafers seedling style avatar for user Caroline Fisher
      Your review book is right, it does mark the end of transcription. That's why it was already a part of the mRNA when translation begins.

      Transcription happens in the nucleus and ends with the G cap and poly A tail being added it is then has to travel to the cytoplasm for translation to happen. The cap and tail protect it while it travels
      (2 votes)
  • hopper jumping style avatar for user Harry Potter
    Since chloroplasts and mitochondria evolved from prokaryotes, do they translate/transcribe without the 5' cap and poly-a tail and use Fmet instead of met?
    (3 votes)
    Default Khan Academy avatar avatar for user

Video transcript

- [Voiceover] Let's talk about some of the differences between how translation happens in prokaryotic cells and how it happens in eukaryotic cells. And I want to focus mainly on the mRNA just before it's ready to be translated. So let's start with our prokaryotic mRNA and let's look at our five prime side first. So we have this yellow part right here, and that's the noncoding region. And it's called the noncoding region because the ribosome is not actually going to read that part. So that particular sequence of amino acid is not that important. And then after the noncoding region we have the Shine-Dalgarno sequence. And the Shine-Delgarno sequence is the site that the ribosome's going to recognize and bind to. So let's just throw a ribosome right over here. This is where the prokaryotic ribosome is going to bind. And then after the Shine-Delgarno sequence, we have another noncoding region. Just gonna abbreviate it NCR. And then we have our start codon, which is typically AUG, so that tells us to start. And so the ribosome's going to start translating, it's going to read this entire section, put together the corresponding polypeptide chain, until it hits the stop codon, which tells it to stop translating. And then we have another noncoding region. Let's look at our eukaryotic mRNA. And so it's pretty similar, but you can see there are some differences. So we'll start with our five prime side first. So you see this red nucleotide right over here. That's the five prime cap. And the five prime cap is simply a guanine nucleotide. So I'm gonna draw a G inside, Guanine, and it's going to have a methyl group somewhere on the molecule. So I'm gonna draw a methyl group. And the bond between this guanine and the nucleotide right near it is a bond that's different than the bond that you'd typically find between two nucleotides. And so that's really all the five prime cap is. And the five prime cap is actually the ribosomal binding site in eukaryotes. So that means that in eukaryotes, the ribosome's going to recognize this particular part and bind to it. So after the five prime cap, we have this other noncoding region which the ribosome's not going to translate. And then the ribosome is going to hit the start codon again. AUG tells it to start, and it's gonna start translating, so it's going to translate this entire section until it hits the stop codon. And then we have another noncoding region. And then we hit something that looks different than what we've seen in the prokaryotic mRNA, so this section with blue nucleotides, and that's called the poly-A tail. And the poly-A tail is a bunch of nucleotides that are all A's, or adenines, so I'm gonna draw A's inside all of these nucleotides. And the poly-A tail is actually pretty long, so it's typically anywhere between 100 and 250 nucleotides long. So that's pretty long. So I didn't exactly draw it to scale. And the purpose of both the five prime cap, and the poly-A tail is to prevent this mRNA from being degraded by enzymes. So it acts as kind of a signal that does not allow enzymes to break it down or degrade it. And so you might be wondering, well, what about prokaryotic mRNA? How come they don't have anything similar to prevent them from being degraded. And the brief answer to that question is that in prokaryotic cells, transcription, that's an R, and translation, both happen in the same place. So prokaryotic cells don't exactly have a nucleus. They have this cytosol and transcription and translation are happening in the same place. And not only are they happening in the same place, but they can actually be happening at the same time. So you can have a piece of mRNA that's being formed, and while it's being formed, a ribosome will attach to it and being to translate it. But, in eukaryotic cells, things are a little bit different. So transcription... happens in the nucleus, and translation happens in the cytoplasm where there are ribosomes. And so the mRNA, after it's made, has to travel, from the nucleus to the cytoplasm to where the ribosomes are. And so because it's traveling this relatively large distance, it's going to encounter a lot of different things, including enzymes that might break it down. And so it needs this extra protection to prevent it from being damaged in any way. There's one more difference I want to talk about in how translation happens in prokaryotes and eukaryotes and that is what the first amino acid in the polypeptide chain will be. So in prokaryotic cells, the first amino acid in the chain is always formylmethionine. And formylmethionine is simply the amino acid methionine, but with a formyl group attached. And in case you don't remember what a formyl group looks like, it looks like that. In eukaryotic cells, the first amino acid in all the polypeptide chains is simply methionine. And it's interesting to note that formylmethionine actually acts as an alarm system in the human body. So if you had some bacterial cells in your body that were damaged in any way, there would be these formylmethionines floating around, and that tells your body that there are bacteria around, and it's going to trigger an immune response.