If you're seeing this message, it means we're having trouble loading external resources for Khan Academy.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Surface integrals and Stokes' theorem
Parameterizing a surface. Surface integrals. Stokes' theorem.
All content in “Surface integrals and Stokes' theorem”

Parameterizing a surface

You can parameterize a line with a position vector valued function and understand what a differential means in that context already. This tutorial will take things further by parametrizing surfaces (2 parameters baby!) and have us thinking about partial differentials.

Flux in 3D and constructing unit normal vectors to surface

Flux can be view as the rate at which "stuff" passes through a surface. Imagine a net placed in a river and imagine the water that is flowing directly across the net in a unit of time--this is flux (and it would depend on the orientation of the net, the shape of the net, and the speed and direction of the current). It is an important idea throughout physics and is key for understanding Stokes' theorem and the divergence theorem.

Stokes' theorem intuition and application

Stokes' theorem relates the line integral around a surface to the curl on the surface. This tutorial explores the intuition behind Stokes' theorem, how it is an extension of Green's theorem to surfaces (as opposed to just regions) and gives some examples using it. We prove Stokes' theorem in another tutorial. Good to come to this tutorial having experienced the tutorial on "flux in 3D".