If you're seeing this message, it means we're having trouble loading external resources for Khan Academy.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Indefinite and definite integrals
Indefinite integral as anti-derivative. Definite integral as area under a curve. Integration by parts. U-substitution. Trig substitution.
All content in “Indefinite and definite integrals”

Indefinite integral as anti-derivative

You are very familiar with taking the derivative of a function. Now we are going to go the other way around--if I give you a derivative of a function, can you come up with a possible original function. In other words, we'll be taking the anti-derivative!

Riemann sums

In this tutorial, we'll think about how we can find the area under a curve. We'll first approximate this with rectangles (and trapezoids)--generally called Riemann sums. We'll then think about find the exact area by having the number of rectangles approach infinity (they'll have infinitesimal widths) which we'll use the definite integral to denote.

Functions defined by integrals

Let's explore functions defined by definite integrals. It will hopefully give you a deeper appreciation of what a definite integral represents.

Fundamental theorem of calculus

You get the general idea that taking a definite integral of a function is related to evaluating the antiderivative, but where did this connection come from. This tutorial focuses on the fundamental theorem of calculus which ties the ideas of integration and differentiation together. We'll explain what it is, give a proof and then show examples of taking derivatives of integrals where the Fundamental Theorem is directly applicable.

Integration by parts

When we wanted to take the derivative of f(x)g(x) in differential calculus, we used the product rule. In this tutorial, we use the product rule to derive a powerful way to take the anti-derivative of a class of functions--integration by parts.

u-substitution

U-substitution is a must-have tool for any integrating arsenal (tools aren't normally put in arsenals, but that sounds better than toolkit). It is essentially the reverise chain rule. U-substitution is very useful for any integral where an expression is of the form g(f(x))f'(x)(and a few other cases). Over time, you'll be able to do these in your head without necessarily even explicitly substituting. Why the letter "u"? Well, it could have been anything, but this is the convention. I guess why not the letter "u" :)

Trigonometric substitution

We will now do another substitution technique (the other was u-substitution) where we substitute variables with trig functions. This allows us to leverage some trigonometric identities to simplify the expression into one that it is easier to take the anti-derivative of.

Improper integrals

Not everything (or everyone) should or could be proper all the time. Same is true for definite integrals. In this tutorial, we'll look at improper integrals--ones where one or both bounds are at infinity! Mind blowing!

Average value of a function

We don't need calculus to figure out the average value of a linear function over an interval, but what about non-linear functions? Luckily, integral calculus comes to the rescue here. In this tutorial, we'll understand what "average value" of a function over an interval means. We'll also connect that notion to the Mean Value Theorem we first learned in differential calculus.