If you're seeing this message, it means we're having trouble loading external resources for Khan Academy.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Taking derivatives
Calculating derivatives. Power rule. Product and quotient rules. Chain Rule. Implicit differentiation. Derivatives of common functions.
All content in “Taking derivatives”

Introduction to differential calculus

The topic that is now known as "calculus" was really called "the calculus of differentials" when first devised by Newton (and Leibniz) roughly four hundred years ago. To Newton, differentials were infinitely small "changes" in numbers that previous mathematics didn't know what to do with. Think this has no relevence to you? Well how would you figure out how fast something is going *right* at this moment (you'd have to figure out the very, very small change in distance over an infinitely small change in time)? This tutorial gives a gentle introduction to the world of Newton and Leibniz.

Using secant line slopes to approximate tangent slope

The idea of slope is fairly straightforward-- (change in vertical) over (change in horizontal). But how do we measure this if the (change in horizontal) is zero (which would be the case when finding the slope of the tangent line. In this tutorial, we'll approximate this by finding the slopes of secant lines.

Derivative properties and intuition

Let's now get a better understanding of the different derivative-related notations and use them to better understand properties of derivatives.

Power rule

Calculus is about to seem strangely straight forward. You've spent some time using the definition of a derivative to find the slope at a point. In this tutorial, we'll derive and apply the derivative for any term in a polynomial. By the end of this tutorial, you'll have the power to take the derivative of any polynomial like it's second nature!

Chain rule

You can take the derivatives of f(x) and g(x), but what about f(g(x)) or g(f(x))? The chain rule gives us this ability. Because most complex and hairy functions can be thought of the composition of several simpler ones (ones that you can find derivatives of), you'll be able to take the derivative of almost any function after this tutorial. Just imagine.

Proofs of derivatives of common functions

We told you about the derivatives of many functions, but you might want proof that what we told you is actually true. That's what this tutorial tries to do!