If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Multiplying in scientific notation example

Scientific notation shows a number (greater than or equal to 1 and less than 10) times a power of 10. To multiply two numbers in scientific notation, we can rearrange the equation with the associative and commutative properties. If the final product is not in scientific notation, we can regroup a factor of 10. Created by Sal Khan and Monterey Institute for Technology and Education.

Want to join the conversation?

  • starky tree style avatar for user imamulhaq
    Why would you use scientific notation in real life
    (25 votes)
    Default Khan Academy avatar avatar for user
    • old spice man green style avatar for user oompa loompa
      Faster communication is why. Scientists publish their results in papers, give presentations, and frequently work in groups in labs. All of this requires formatting numbers to make it easy for others to see and use. Often these numbers are very, very large, or very, very small. It's difficult, annoying, and time-consuming to make comparisons where you have to count all the zeroes each and every time.

      For example, which number is bigger: 5500000000000000000 or 55000000000000000000? Wouldn't it be faster and easier to answer this question with 5.5*10^18 versus 5.5x10^19?
      (38 votes)
  • blobby green style avatar for user Luis Calvillo
    what if the there is two negative -5 what you do
    (4 votes)
    Default Khan Academy avatar avatar for user
    • spunky sam blue style avatar for user Sal Khan
      10^-5 * 10^-5 would be 10^(-5 + -5) = 10^-10. When we multiply everything out, we would get 29.12 x 10^-10 which is correct numerically but not quite correct scientific notation. We could rewrite 29.12 as (2.912 x 10) so our answer would be (2.912 x 10) x 10^-10 = 2.912 * 10^-9
      (54 votes)
  • female robot grace style avatar for user adina.fleisher
    The point of the video is to Multiply and Divide Scientific Notation, right? So how come at you add? Is it something about exponent rules? If so, can someone please explain it, and, if not, can someone please tell me how? Thanks. And also, why do you have to change the number at ? Thanks in advance for the help.
    (10 votes)
    Default Khan Academy avatar avatar for user
  • old spice man green style avatar for user Andrew Tysick
    where are you going to need this in life or what job
    (7 votes)
    Default Khan Academy avatar avatar for user
    • leaf orange style avatar for user Benny C
      When you have to write a really huge number, like 159,000,000,000,000,000,000,000,000, scientific notation will come in handy. In physics, scientific notation is especially useful. Really really big numbers show up often, and they will most likely be written in scientific notation.
      (8 votes)
  • blobby green style avatar for user Karl Yorston
    As an engineer and mathematician, I have long added a step with my students as to how to finish off operations with scientific notation, and I would like some feedback on this, please. Scientific notation serves TWO functions: to show at a glance how big (or small) a number is; and... to show how accurately that number is known via the number of digits in the significand (or coefficient or mantissa, as it is sometimes called). When multiplying or dividing two numbers together in scientific notation, the answer should not be represented as MORE accurately known than either of the original numbers. Thus, I have always given my students a rough guideline for how to round the final answer to more appropriately display the proper accuracy. The guideline I use is to inspect the number of digits given in each significand, rounding the answer to the least number of digits in the two original numbers. As such, in the video above, I would have rounded the significand in the final answer to 2.9 (NOT 2.912), since each of the two original numbers only had two digits of accuracy in them. (9.1 and 3.2.) This is not perfect, but it is a simple method to roughly account for the fact that accuracy cannot improve just from multiplying two inaccurate numbers together! Any thoughts on my guideline and why something similar to it is not commonly used when teaching operations in scientific notation?
    (7 votes)
    Default Khan Academy avatar avatar for user
  • male robot donald style avatar for user Salil Kamat
    When you are moving digits for the scientific notation, moving to left increasing and to the decreasing right?
    (4 votes)
    Default Khan Academy avatar avatar for user
  • mr pink red style avatar for user Jackie Daley
    What are you suppose to do when it's .34 or something? He doesn't explain that, and those are in the questions you have to do after the video.
    (8 votes)
    Default Khan Academy avatar avatar for user
  • male robot donald style avatar for user klickerklown
    Define scientific notation specifically?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • blobby green style avatar for user Emily Taylor
    how would I solve the following:
    (2.0^3)^2 x 10^2
    (1 vote)
    Default Khan Academy avatar avatar for user
  • orange juice squid orange style avatar for user Chase Bearup
    why did it go to 2 when it 10 to the 1st
    (1 vote)
    Default Khan Academy avatar avatar for user

Video transcript

Multiply, expressing the product in scientific notation. So let's multiply first, and then let's try to get what we have in scientific notation. Actually, before we do that, let's just even remember what it means to be in scientific notation. To be in scientific notation-- and actually, each of these numbers right here are in scientific notation. It's going to be the form a times 10 to some power, where a can be greater than or equal to 1, and it is going to be less than 10. So both of these numbers are greater than or equal to 1, and they are less than 10, and they're being multiplied by some power of 10. Let's see how we could multiply this. So this over here, this is just the exact same thing. So if I do this in magenta, this is the exact same thing as 9.1 times 10 to the sixth times 3.2 times-- actually, I don't have to write it. Let me write it all with a dot notation to make it a little bit more straightforward. I'm doing that in magenta. This is equal to 9.1 times 10 to the sixth-- let me do it in this green color-- times 3.2 times 10 to the negative 5th power. Now in multiplication, this comes from the associative property. It essentially allows us to remove these parentheses. It says, look, you can multiply like that first, or you could actually multiply these guys first. You can reassociate them. And the commutative property tells us that we can rearrange this thing right here. What I want to rearrange is I want to multiply the 9.1 times the 3.2 first and then multiply that times 10 to the sixth times 10 the negative 5. So I'm just going to rearrange this using the commutative property. This is the same thing as 9.1 times 3.2, and I'm going to reassociate. So I'm going to do these first, and then that times 10 to the sixth times 10 to the negative 5. And the reason why this is useful is that this is really easy to multiply. We have the same base here, base 10, and we're taking the product, so we can add the exponents. So this part right over here, 10 to the sixth times 10 to the negative 5, that's going to be 10 to the 6 minus 5 power, or essentially just 10 to the first power, which is really just equal to 10. And that's going to be multiplied by 9.1 times 3.2. So let me do that over here. If I have 9.1 times 3.2, so at first I'm going to ignore the decimal, so I'm just going to treat it like 91 times 32. So I have 2 times 1 is 2. 2 times 9 is 18. I'll stick a 0 here because I'm in the tens place now, multiplying everything really by 30 not just by 3. That's why my zero is there. And I multiplied 3 times 1 to get 3, and then 3 times 9 is 27. And so it is 2. So I'm adding here. 2 plus 0 is 2. 8 plus 3 is 11, carry or regroup that 1. 1 plus 1 is 2. 2 plus 7 is 9. And then I have a 2 here. So 91 times 32 is 2,912. But I didn't multiply 91 times 32. I multiplied 9.1 times 3.2. So what I want to do is count the number of digits I have behind the decimal point. I have one, two digits behind the decimal point, and so I'll have to have two digits behind the decimal point in the answer. So one, two, I'll stick the decimal right over there. This part right over here comes out to be 29.12. You might feel like we're done. This kind of looks like scientific notation. I have a number times a power of 10. But remember, this number has to be greater than or equal to 1-- which it is-- and less than 10. But this number is not less than 10. It's not in scientific notation. What we can do is let's just write this number in scientific notation, and then we can use the power of 10 part to multiply by this power of 10. 29.12, this is the same thing as 2.912. Notice, what did I do to go from there to there? I just moved the decimal to the left. Or another way to think about it, if I wanted to go from here to there, what could I do to this? Well, I would multiply it by 10. If I multiplied it by 10, I would move the decimal to the right. It would go from 2.9 to 29. So if I want to write this value, this is just this times 10. So 29.12 is the same thing as 2.912 times 10. Now, this is in scientific notation, but that's just this part. And I still have to multiply it by another 10, so times another 10. To finish up this problem, we get 2.912 times 10 times 10, or 10 to the first times 10 to the first. Well, what's that? Well, that's going to be this part right over here. That's just 10 squared. So it's 2.912 times 10 to the second power, and we are done.